Possible existence of van der Waals macrodimers

被引:4
作者
Han, Jianing [1 ,2 ]
Hu, Chunyan [2 ]
机构
[1] Univ S Alabama, Dept Phys, Mobile, AL 36688 USA
[2] Hollins Univ, Dept Phys, Roanoke, VA 24020 USA
关键词
33.20.Bx; 36.40.Mr; 32.70.Jz; few body interactions; Rydberg atoms; Van der Waals interactions; lasers; molecules; BOSE-EINSTEIN CONDENSATION; RYDBERG BLOCKADE; NOBEL LECTURE; ATOMS; GAS;
D O I
10.1080/00268976.2015.1109150
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Few-body interactions offer the opportunity to study the isolated atom to few-body coupled molecules, and to condensed matter transitions. Atoms in molecules and in condensed matters are coupled by different orders of multipole-multipole interactions, which all stem from different orders of approximations from coulomb interactions between multiple charges. The lowest order multipole-multipole interaction is the dipole-dipole interaction, which is proportional to the size of the dipole. In this article, we use Rydberg atoms, which have more than 1000 times greater electric dipoles than the ground state atoms, to study the van der Waals interaction between few bodies. In addition to the large dipoles, the kinetic energy of the atoms is significantly reduced by reducing the temperature, which makes these interactions stable and observable. Here, we report on the 2D and 3D few-body interaction potentials and possible ways of creating semistable molecules in such an ultracold Rydberg gas with a temperature of approximate to 100 nK. Although we use Rydberg atoms in this article, this calculation can be applied to other states too. The results reported here are useful for studying repulsive van der Waals interactions and creating ultracold molecules. [GRAPHICS]
引用
收藏
页码:637 / 642
页数:6
相关论文
共 50 条
  • [1] Two-Dimensional Six-Body van der Waals Interactions
    Han, Jianing
    ATOMS, 2022, 10 (01)
  • [2] van der Waals explosion of cold Rydberg clusters
    Faoro, R.
    Simonelli, C.
    Archimi, M.
    Masella, G.
    Valado, M. M.
    Arimondo, E.
    Mannella, R.
    Ciampini, D.
    Morsch, O.
    PHYSICAL REVIEW A, 2016, 93 (03)
  • [3] Nanoscale van der Waals interactions
    Cole, Milton W.
    Velegol, Darrell
    Kim, Hye-Young
    Lucas, Amand A.
    MOLECULAR SIMULATION, 2009, 35 (10-11) : 849 - 866
  • [4] Six-body van der Waals interactions
    Han, Jianing
    MOLECULAR PHYSICS, 2020, 118 (01)
  • [5] The Entropy of van der Waals Fluid
    Lei, Yanhua
    Wang, Xiongliang
    Sun, Huapeng
    CHEMPHYSCHEM, 2024, 25 (04)
  • [6] Geckos, Ceilings and van der Waals
    Housecroft, Catherine E.
    CHIMIA, 2018, 72 (06) : 428 - 429
  • [7] Transport of hydrogen isotopes through interlayer spacing in van der Waals crystals
    Hu, S.
    Gopinadhan, K.
    Rakowski, A.
    Neek-Amal, M.
    Heine, T.
    Grigorieva, I. V.
    Haigh, S. J.
    Peeters, F. M.
    Geim, A. K.
    Lozada-Hidalgo, M.
    NATURE NANOTECHNOLOGY, 2018, 13 (06) : 468 - +
  • [8] Van der Waals interaction between high excited states
    Zhao Jian-Dong
    Xin Jie
    ACTA PHYSICA SINICA, 2014, 63 (13)
  • [9] Current Understanding of Van der Waals Effects in Realistic Materials
    Tkatchenko, Alexandre
    ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (13) : 2054 - 2061
  • [10] Stability of an attractive bosonic cloud with van der Waals interaction
    Biswas, Anindya
    Das, Tapan Kumar
    Salasnich, Luca
    Chakrabarti, Barnali
    PHYSICAL REVIEW A, 2010, 82 (04):