Bearing Fault Diagnosis Based on Optimal Time-Frequency Representation Method

被引:19
|
作者
Ruiz Quinde, Israel [1 ]
Chuya Sumba, Jorge [1 ]
Escajeda Ochoa, Luis [1 ]
Antonio, Jr. [1 ]
Guevara, Vallejo [1 ]
Morales-Menendez, Ruben [1 ]
机构
[1] Tecnol Monterrey, Monterrey 64489, NL, Mexico
来源
IFAC PAPERSONLINE | 2019年 / 52卷 / 11期
关键词
Wigner-Ville Distribution; Fault Diagnosis; Bearing Spindles; DECOMPOSITION;
D O I
10.1016/j.ifacol.2019.09.140
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Wigner-Ville Distribution (WVD) is probably the most used non-linear time-frequency distribution for signal processing in fault diagnosis, due to the advantages of excellent resolution and localization in time-frequency domain. However, the presence of cross terms when they are applied to multicomponent signals can give misleading interpretations. A methodology based on Local Mean Decomposition (LMD) and WVD is proposed to get more reliable bearing fault diagnosis based on vibration signals. Kullback-Leibler Divergence (KLD) guides the selection of the optimal frequency band with the most relevant information about the fault. Early results based on experimental data show successful diagnosis. (C) 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:194 / 199
页数:6
相关论文
共 50 条
  • [31] Intelligent fault diagnosis of rolling bearing based on EMDPWVD time-frequency images and improved ViT network
    Fan, Hongwei
    Ma, Ningge
    Ma, Jiateng
    Chen, Buran
    Cao, Xiangang
    Zhang, Xuhui
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (11): : 246 - 254
  • [32] Rolling Bearing Fault Diagnosis Based on Time-frequency Transform-assisted CNN: A Comparison Study
    Song, Baoye
    Liu, Yiyan
    Lu, Peng
    Bai, Xingzhen
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 1273 - 1279
  • [33] Bearing Fault Diagnosis Based on Clustering and Sparse Representation in Frequency Domain
    Lu, Yixiang
    Wang, Zhenya
    Zhu, De
    Gao, Qingwei
    Sun, Dong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [34] An improved spectrum correlation time-frequency analysis method and its application in fault diagnosis of rolling element bearing
    Wang, Hongchao
    Du, Wenliao
    JOURNAL OF VIBROENGINEERING, 2020, 22 (04) : 792 - 803
  • [35] Time-Frequency Squeezing and Generalized Demodulation Combined for Variable Speed Bearing Fault Diagnosis
    Huang, Weiguo
    Gao, Guanqi
    Li, Ning
    Jiang, Xingxing
    Zhu, Zhongkui
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2019, 68 (08) : 2819 - 2829
  • [36] Diesel engine fault diagnosis method based on wavelet time-frequency diagram and Swin Transformer
    Liu Z.
    Bai Y.
    Li S.
    Jia X.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2023, 45 (09): : 2986 - 2998
  • [37] Fault Detection for the Scraper Chain Based on Vibration Analysis Using the Adaptive Optimal Kernel Time-Frequency Representation
    Zhang, Xing
    Li, Wei
    Zhu, Zhencai
    Yang, Shanguo
    Jiang, Fan
    SHOCK AND VIBRATION, 2019, 2019
  • [38] Time-frequency Signal Analysis in Machinery Fault Diagnosis: Review
    Hui, K. H.
    Hee, Lim Meng
    Leong, M. Salman
    Abdelrhman, Ahmed M.
    MATERIALS, INDUSTRIAL, AND MANUFACTURING ENGINEERING RESEARCH ADVANCES 1.1, 2014, 845 : 41 - 45
  • [39] Bearing fault diagnosis method based on the generalized S transform time-frequency spectrum de-noised by singular value decomposition
    Cai, Jianhua
    Xiao, Yongliang
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2019, 233 (07) : 2467 - 2477
  • [40] A Bearing Fault Diagnosis Method Based on Vibration Signal Extension and Time-Frequency Information Fusion Network Under Small Sample Conditions
    Ju, Zedong
    Chen, Yinsheng
    Chen, Jiahui
    Yang, Jingli
    IEEE SENSORS JOURNAL, 2024, 24 (17) : 27712 - 27727