An Effective Approach to Classify Abnormal Network Traffic Activities using Wavelet Transform

被引:0
|
作者
Ji, Soo-Yeon [1 ]
Kamhoua, Charles [2 ]
Leslie, Nandi [2 ]
Jeong, Dong Hyun [3 ]
机构
[1] Bowie State Univ, Dept Comp Sci, Bowie, MD 20715 USA
[2] US Army Res Lab ARL, Adelphi, MD 20783 USA
[3] Univ Dist Columbia, Dept Comp Sci & Informat Technol, Washington, DC 20008 USA
来源
2019 IEEE 10TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON) | 2019年
关键词
Network Traffic Analysis; Wavelet Transformation; Visual Analytics; Feature Extraction; Machine Learning; NSL-KDD; Pearson Correlation; PCA;
D O I
10.1109/uemcon47517.2019.8993044
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Understanding network activities has become the most significant task in network security due to the rapid growth of the Internet and mobile devices usages. To protect our computing infrastructures and personal data from network intruders or attacks, identifying abnormal activities is critical. Extracting features from network traffic data is considered as an essential task to be performed because it affects the overall performances to identify the activities accurately. Although researchers proposed several approaches, they mainly focused on identifying the best possible technique to detect abnormal network activities. Only a few studies considered utilizing feature extraction techniques. In this paper, we introduced a new approach, with which an integrative information feature set is determined to identify abnormal network activities using wavelet transformation. Instead of extracting features by attributes, the approach uses all attributes information to extract features and to design a reliable learning model to detect abnormal activities by reducing false positives. Two machine learning techniques, Logistic Regression (LR) and Naive Bayes, are utilized to show the effectiveness of the approach. A visualization method is also used to emphasize our approach. As a result, we found that our proposed approach produces a better performance result with less computational time in detecting abnormal network activities.
引用
收藏
页码:666 / 672
页数:7
相关论文
共 50 条
  • [41] An expert system for fault diagnosis in internal combustion engines using wavelet packet transform and neural network
    Wu, Jian-Da
    Liu, Chiu-Hong
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (03) : 4278 - 4286
  • [42] Network traffic analysis using machine learning: an unsupervised approach to understand and slice your network
    Ons Aouedi
    Kandaraj Piamrat
    Salima Hamma
    J. K. Menuka Perera
    Annals of Telecommunications, 2022, 77 : 297 - 309
  • [43] Approach based on wavelet packet transform and 1D-RMLBP for drowsiness detection using EEG
    Alcin, OE. F.
    ELECTRONICS LETTERS, 2020, 56 (25) : 1378 - U21
  • [44] An Approach for Classification of Network Traffic on Semi - Supervised Data using Clustering Techniques
    Shukla, Dheeraj Basant
    Chandel, Gajendra Singh
    2013 4TH NIRMA UNIVERSITY INTERNATIONAL CONFERENCE ON ENGINEERING (NUICONE 2013), 2013,
  • [45] An Approach for the Detection and Classification of Tumor Cells from Bone MRI Using Wavelet Transform and KNN Classifier
    Hossain, Eftekhar
    Hossain, Md. Farhad
    Rahaman, Mohammad Anisur
    2018 INTERNATIONAL CONFERENCE ON INNOVATION IN ENGINEERING AND TECHNOLOGY (ICIET), 2018,
  • [46] Performance evaluation of secured network traffic classification using a machine learning approach
    Afuwape, Afeez Ajani
    Xu, Ying
    Anajemba, Joseph Henry
    Srivastava, Gautam
    COMPUTER STANDARDS & INTERFACES, 2021, 78 (78)
  • [47] Implementation of Network Traffic Classifier using Semi Supervised Machine Learning Approach
    Mahajan, Vinod Shantaram
    Verma, Bhupendra
    3RD NIRMA UNIVERSITY INTERNATIONAL CONFERENCE ON ENGINEERING (NUICONE 2012), 2012,
  • [48] Fault Location with High Precision of Flexible DC Distribution System Using Wavelet Transform and Convolution Neural Network
    Wang, Dafei
    Wang, Baohua
    Zhang, Wenhui
    Zhang, Chi
    Yu, Jiacheng
    FRONTIERS IN ENERGY RESEARCH, 2021, 9
  • [49] Detection of normal and epileptic EEG signals using by lifting based HAAR wavelet transform and artificial neural network
    Vani, S.
    ChandraSekhar, P.
    Sankriti, Ramanarayan
    Aparna, G.
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2021,
  • [50] Automatic Classification of Single and Hybrid Power Quality Disturbances Using Wavelet Transform and Modular Probabilistic Neural Network
    Khokhar, S.
    Zin, A. A. Mohd.
    Mokhtar, A. S.
    Bhayo, M. A.
    Naderipour, A.
    2015 IEEE CONFERENCE ON ENERGY CONVERSION (CENCON), 2015, : 457 - 462