Curvature driven motion of a bubble in a toroidal Hele-Shaw cell

被引:3
作者
Mughal, A. [1 ,2 ]
Cox, S. J. [1 ]
Schroeder-Turk, G. E. [2 ,3 ]
机构
[1] Aberystwyth Univ, Dept Math, Aberystwyth SY23 3BZ, Ceredigion, Wales
[2] Friedrich Alexander Univ Erlangen Nurnberg, Theoret Phys, Staudtstr 7, D-91058 Erlangen, Germany
[3] Murdoch Univ, Sch Engn & IT, Perth, WA 6162, Australia
基金
英国工程与自然科学研究理事会;
关键词
soap bubbles; curvature driven motion; Hele-Shaw Cell; EQUILIBRIUM CONDITIONS; FOAMS; CONTACT;
D O I
10.1098/rsfs.2016.0106
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We investigate the equilibrium properties of a single area-minimizing bubble trapped between two narrowly separated parallel curved plates. We begin with the case of a bubble trapped between concentric spherical plates. We develop a model which shows that the surface energy of the bubble is lower when confined between spherical plates than between flat plates. We confirm our findings by comparing against Surface Evolver simulations. We then derive a simple model for a bubble between arbitrarily curved parallel plates. The energy is found to be higher when the local Gaussian curvature of the plates is negative and lower when the curvature is positive. To check the validity of the model, we consider a bubble trapped between concentric tori. In the toroidal case, we find that the sensitivity of the bubble's energy to the local curvature acts as a geometric potential capable of driving bubbles from regions with negative to positive curvature.
引用
收藏
页数:10
相关论文
共 34 条
[1]   Global minimum for Thomson's problem of charges on a sphere -: art. no. 047703 [J].
Altschuler, EL ;
Pérez-Garrido, A .
PHYSICAL REVIEW E, 2005, 71 (04)
[2]  
[Anonymous], 2012, FOAM ENG FUNDAMENTAL
[3]  
[Anonymous], 1981, COMPREHENSIVE INTRO
[4]   Grain boundary scars and spherical crystallography [J].
Bausch, AR ;
Bowick, MJ ;
Cacciuto, A ;
Dinsmore, AD ;
Hsu, MF ;
Nelson, DR ;
Nikolaides, MG ;
Travesset, A ;
Weitz, DA .
SCIENCE, 2003, 299 (5613) :1716-1718
[5]   The isoperimetric problem [J].
Blåsjö, V .
AMERICAN MATHEMATICAL MONTHLY, 2005, 112 (06) :526-566
[6]   Two-dimensional matter: order, curvature and defects [J].
Bowick, Mark J. ;
Giomi, Luca .
ADVANCES IN PHYSICS, 2009, 58 (05) :449-563
[7]  
Brakke K., 1992, Exper. Math, V1, P141, DOI DOI 10.1080/10586458.1992.10504253
[8]   The isoperimetric problem in complete annuli of revolution with increasing Gauss curvature [J].
Canete, Antonio ;
Ritore, Manuel .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2008, 138 :989-1003
[9]   On the structure of quasi-two-dimensional foams [J].
Cox, S. J. ;
Janiaud, E. .
PHILOSOPHICAL MAGAZINE LETTERS, 2008, 88 (9-10) :693-701
[10]   Shear modulus of two-dimensional foams: The effect of area dispersity and disorder [J].
Cox, S. J. ;
Whittick, E. L. .
EUROPEAN PHYSICAL JOURNAL E, 2006, 21 (01) :49-56