Hypersurface homogeneous Killing spinor space-times

被引:0
作者
Van den Bergh, N. [1 ]
机构
[1] Univ Ghent, Dept Math Anal FEA16, B-9000 Ghent, Belgium
关键词
Killing spinors; hypersurface homogeneity; classification of space-times; GENERAL-RELATIVITY; TENSOR; FLUID;
D O I
10.1088/0264-9381/32/2/025012
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
I present a complete list of hypersurface homogeneous space-times admitting a non-null valence two Killing spinor, including a new class admitting only exceptional Killing tensors. A connection is established with the classification of locally rotationally symmetric or boost symmetric space-times.
引用
收藏
页数:16
相关论文
共 14 条
[1]   New symbolic tools for differential geometry, gravitation, and field theory [J].
Anderson, M. ;
Torre, C. G. .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (01)
[2]   Killing spinor spacetimes and constant-eigenvalue Killing tensors [J].
Beke, D. ;
Van den Bergh, N. ;
Wylleman, L. .
CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (10)
[3]   SPACE TIMES ADMITTING KILLING YANO TENSORS .2. [J].
DIETZ, W ;
RUDIGER, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 381 (1781) :315-322
[4]   A REVIEW OF THE GEOMETRICAL EQUIVALENCE OF METRICS IN GENERAL-RELATIVITY [J].
KARLHEDE, A .
GENERAL RELATIVITY AND GRAVITATION, 1980, 12 (09) :693-707
[5]   SPACETIMES ADMITTING KILLING 2-SPINORS [J].
MCLENAGHAN, RG ;
VANDENBERGH, N .
CLASSICAL AND QUANTUM GRAVITY, 1993, 10 (10) :2179-2185
[6]   AN APPROACH TO GRAVITATIONAL RADIATION BY A METHOD OF SPIN COEFFICIENTS [J].
NEWMAN, E ;
PENROSE, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (03) :566-&
[7]   HAUSER-MALHIOT SPACES ADMITTING A PERFECT FLUID ENERGY-MOMENTUM TENSOR [J].
PAPACOSTAS, T .
JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (06) :1445-1450
[8]  
PAPACOSTAS T, 1983, B CL SCI AC ROY BELG, V69, P641
[9]   Anisotropic fluids in the case of stationary and axisymmetric spaces of general relativity [J].
Papakostas, T .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2001, 10 (06) :869-879
[10]   A generalization of the Wahlquist solution [J].
Papakostas, T .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 1998, 7 (06) :927-941