Discrimination of Methicillin-Resistant Staphylococcus aureus by MALDI-TOF Mass Spectrometry with Machine Learning Techniques in Patients with Staphylococcus aureus Bacteremia

被引:6
|
作者
Kong, Po-Hsin [1 ,2 ]
Chiang, Cheng-Hsiung [3 ]
Lin, Ting-Chia [2 ,4 ]
Kuo, Shu-Chen [5 ]
Li, Chien-Feng [6 ]
Hsiung, Chao A. [3 ]
Shiue, Yow-Ling [1 ,4 ]
Chiou, Hung-Yi [3 ,7 ,8 ]
Wu, Li-Ching [1 ,2 ]
Tsou, Hsiao-Hui [3 ,9 ]
机构
[1] Natl Sun Yat Sen Univ, Inst Biomed Sci, Kaohsiung 80424, Taiwan
[2] Chi Mei Med Ctr, Ctr Precis Med, Tainan 71004, Taiwan
[3] Natl Hlth Res Inst, Inst Populat Hlth Sci, Miaoli 35053, Taiwan
[4] Natl Sun Yat Sen Univ, Inst Precis Med, Kaohsiung 80424, Taiwan
[5] Natl Hlth Res Inst, Natl Inst Infect Dis & Vaccinol, Miaoli 35053, Taiwan
[6] Chi Mei Med Ctr, Dept Med Res, Tainan 71004, Taiwan
[7] Taipei Med Univ, Coll Publ Hlth, Sch Publ Hlth, Taipei 11031, Taiwan
[8] Taipei Med Univ, Coll Publ Hlth, Masters Program Appl Epidemiol, Taipei 11031, Taiwan
[9] China Med Univ, Coll Publ Hlth, Grad Inst Biostat, Taichung 40402, Taiwan
来源
PATHOGENS | 2022年 / 11卷 / 05期
关键词
methicillin-resistant Staphylococcus aureus; Staphylococcus aureus bacteremia; antimicrobial susceptibility testing; MALDI-TOF MS; machine learning; binning method; SUPPORT VECTOR MACHINE; GENETIC ALGORITHM; IDENTIFICATION; TIME; MS; PREVALENCE; EPIDEMIOLOGY; HOSPITALS; COMMUNITY; SELECTION;
D O I
10.3390/pathogens11050586
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Early administration of proper antibiotics is considered to improve the clinical outcomes of Staphylococcus aureus bacteremia (SAB), but routine clinical antimicrobial susceptibility testing takes an additional 24 h after species identification. Recent studies elucidated matrix-assisted laser desorption/ionization time-of-flight mass spectra to discriminate methicillin-resistant strains (MRSA) or even incorporated with machine learning (ML) techniques. However, no universally applicable mass peaks were revealed, which means that the discrimination model might need to be established or calibrated by local strains' data. Here, a clinically feasible workflow was provided. We collected mass spectra from SAB patients over an 8-month duration and preprocessed by binning with reference peaks. Machine learning models were trained and tested by samples independently of the first six months and the following two months, respectively. The ML models were optimized by genetic algorithm (GA). The accuracy, sensitivity, specificity, and AUC of the independent testing of the best model, i.e., SVM, under the optimal parameters were 87%, 75%, 95%, and 87%, respectively. In summary, almost all resistant results were truly resistant, implying that physicians might escalate antibiotics for MRSA 24 h earlier. This report presents an attainable method for clinical laboratories to build an MRSA model and boost the performance using their local data.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Methicillin-resistant Staphylococcus aureus: the superbug
    Ippolito, Giuseppe
    Leone, Sebastiano
    Lauria, Francesco N.
    Nicastri, Emanuele
    Wenzel, Richard P.
    INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2010, 14 : S7 - S11
  • [42] Epidemiology of methicillin-resistant Staphylococcus aureus
    Fluckiger, U
    Widmer, AF
    CHEMOTHERAPY, 1999, 45 (02) : 121 - 134
  • [43] Methicillin-resistant Staphylococcus argenteus misidentified as methicillin-resistant Staphylococcus aureus emerging in western Sweden
    Hallback, Erika Tang
    Karami, Nahid
    Adlerberth, Ingegerd
    Cardew, Sofia
    Ohlen, Maria
    Jakobsson, Hedvig Engstrom
    Stadler, Liselott Svensson
    JOURNAL OF MEDICAL MICROBIOLOGY, 2018, 67 (07) : 968 - 971
  • [44] Experiences of nursing staff caring for patients with methicillin-resistant Staphylococcus aureus
    Andersson, H.
    Gleissman, S. Andreassen
    Lindholm, C.
    Fossum, B.
    INTERNATIONAL NURSING REVIEW, 2016, 63 (02) : 233 - 241
  • [45] Staphylococcus aureus and methicillin-resistant Staphylococcus aureus in retail raw chicken in China
    Wang, Xin
    Tao, Xiaoya
    Xia, Xiaodong
    Yang, Baowei
    Xi, Meili
    Meng, Jianghong
    Zhang, Jing
    Xu, Benjin
    FOOD CONTROL, 2013, 29 (01) : 103 - 106
  • [46] Vancomycin plus ceftaroline for persistent methicillin-resistant Staphylococcus aureus bacteremia
    Kufel, Wesley D.
    Parsels, Katie A.
    Blaine, Bruce E.
    Steele, Jeffrey M.
    Mahapatra, Rahul
    Paolino, Kristopher M.
    Thomas, Stephen J.
    PHARMACOTHERAPY, 2023, 43 (01): : 15 - 23
  • [47] MALDI-TOF mass spectrometry for quantitative gene expression analysis of acid responses in Staphylococcus aureus
    Rode, Tone Mari
    Berget, Ingunn
    Langsrud, Solveig
    Moretro, Trond
    Holck, Askild
    JOURNAL OF MICROBIOLOGICAL METHODS, 2009, 78 (01) : 86 - 93
  • [48] Methicillin-resistant Staphylococcus aureus in long-term-care facilities
    Manzur, A.
    Gudiol, F.
    CLINICAL MICROBIOLOGY AND INFECTION, 2009, 15 : 26 - 30
  • [49] Methicillin-resistant and methicillin-sensitive Staphylococcus aureus laryngitis
    Shah, Manish D.
    Klein, Adam M.
    LARYNGOSCOPE, 2012, 122 (11) : 2497 - 2502
  • [50] Dynamics of methicillin-resistant Staphylococcus aureus and methicillin-susceptible Staphylococcus aureus carriage in pig farmers: a prospective cohort study
    van Cleef, B. A. G. L.
    van Benthem, B. H. B.
    Verkade, E. J. M.
    van Rijen, M.
    Kluytmans-van den Bergh, M. F. Q.
    Schouls, L. M.
    Duim, B.
    Wagenaar, J. A.
    Graveland, H.
    Bos, M. E. H.
    Heederik, D.
    Kluytmans, J. A. J. W.
    CLINICAL MICROBIOLOGY AND INFECTION, 2014, 20 (10) : O764 - O771