Discrimination of Methicillin-Resistant Staphylococcus aureus by MALDI-TOF Mass Spectrometry with Machine Learning Techniques in Patients with Staphylococcus aureus Bacteremia

被引:6
|
作者
Kong, Po-Hsin [1 ,2 ]
Chiang, Cheng-Hsiung [3 ]
Lin, Ting-Chia [2 ,4 ]
Kuo, Shu-Chen [5 ]
Li, Chien-Feng [6 ]
Hsiung, Chao A. [3 ]
Shiue, Yow-Ling [1 ,4 ]
Chiou, Hung-Yi [3 ,7 ,8 ]
Wu, Li-Ching [1 ,2 ]
Tsou, Hsiao-Hui [3 ,9 ]
机构
[1] Natl Sun Yat Sen Univ, Inst Biomed Sci, Kaohsiung 80424, Taiwan
[2] Chi Mei Med Ctr, Ctr Precis Med, Tainan 71004, Taiwan
[3] Natl Hlth Res Inst, Inst Populat Hlth Sci, Miaoli 35053, Taiwan
[4] Natl Sun Yat Sen Univ, Inst Precis Med, Kaohsiung 80424, Taiwan
[5] Natl Hlth Res Inst, Natl Inst Infect Dis & Vaccinol, Miaoli 35053, Taiwan
[6] Chi Mei Med Ctr, Dept Med Res, Tainan 71004, Taiwan
[7] Taipei Med Univ, Coll Publ Hlth, Sch Publ Hlth, Taipei 11031, Taiwan
[8] Taipei Med Univ, Coll Publ Hlth, Masters Program Appl Epidemiol, Taipei 11031, Taiwan
[9] China Med Univ, Coll Publ Hlth, Grad Inst Biostat, Taichung 40402, Taiwan
来源
PATHOGENS | 2022年 / 11卷 / 05期
关键词
methicillin-resistant Staphylococcus aureus; Staphylococcus aureus bacteremia; antimicrobial susceptibility testing; MALDI-TOF MS; machine learning; binning method; SUPPORT VECTOR MACHINE; GENETIC ALGORITHM; IDENTIFICATION; TIME; MS; PREVALENCE; EPIDEMIOLOGY; HOSPITALS; COMMUNITY; SELECTION;
D O I
10.3390/pathogens11050586
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Early administration of proper antibiotics is considered to improve the clinical outcomes of Staphylococcus aureus bacteremia (SAB), but routine clinical antimicrobial susceptibility testing takes an additional 24 h after species identification. Recent studies elucidated matrix-assisted laser desorption/ionization time-of-flight mass spectra to discriminate methicillin-resistant strains (MRSA) or even incorporated with machine learning (ML) techniques. However, no universally applicable mass peaks were revealed, which means that the discrimination model might need to be established or calibrated by local strains' data. Here, a clinically feasible workflow was provided. We collected mass spectra from SAB patients over an 8-month duration and preprocessed by binning with reference peaks. Machine learning models were trained and tested by samples independently of the first six months and the following two months, respectively. The ML models were optimized by genetic algorithm (GA). The accuracy, sensitivity, specificity, and AUC of the independent testing of the best model, i.e., SVM, under the optimal parameters were 87%, 75%, 95%, and 87%, respectively. In summary, almost all resistant results were truly resistant, implying that physicians might escalate antibiotics for MRSA 24 h earlier. This report presents an attainable method for clinical laboratories to build an MRSA model and boost the performance using their local data.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Peptide Biomarker Discovery for Identification of Methicillin-Resistant and Vancomycin-Intermediate Staphylococcus aureus Strains by MALDI-TOF
    Lu, Jang-Jih
    Tsai, Fuu-Jen
    Ho, Cheng-Mao
    Liu, Yu-Ching
    Chen, Chao-Jung
    ANALYTICAL CHEMISTRY, 2012, 84 (13) : 5685 - 5692
  • [22] Methicillin-Resistant Staphylococcus aureus Laryngitis
    Liakos, Tracey
    Kaye, Keith
    Rubin, Adam D.
    ANNALS OF OTOLOGY RHINOLOGY AND LARYNGOLOGY, 2010, 119 (09) : 590 - 593
  • [23] Methicillin-Resistant Staphylococcus aureus in Obstetrics
    Sheffield, Jeanne S.
    AMERICAN JOURNAL OF PERINATOLOGY, 2013, 30 (02) : 125 - 129
  • [24] Prevalence of Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus in Retail Ready to-Eat Foods in China
    Yang, Xiaojuan
    Zhang, Jumei
    Yu, Shubo
    Wu, Qingping
    Guo, Weipeng
    Huang, Jiahui
    Cai, Shuzhen
    FRONTIERS IN MICROBIOLOGY, 2016, 7
  • [25] Persistent methicillin-resistant Staphylococcus aureus bacteremia owing to placental abscess
    Maeda, Naomi
    Hagiya, Hideharu
    Takiuchi, Tsuyoshi
    Kusakabe, Shinsuke
    Maeda, Tetsuo
    Kimura, Keigo
    Iwai, Sayuri
    Kawasaki, Keisuke
    Hori, Yumiko
    Morii, Eiichi
    Kanakura, Yuzuru
    Kimura, Tadashi
    Tomono, Kazunori
    JOURNAL OF INFECTION AND CHEMOTHERAPY, 2018, 24 (12) : 975 - 979
  • [26] Epidemiology of Methicillin-Resistant Staphylococcus aureus Bacteremia in Gaborone, Botswana
    Wood, Sarah M.
    Shah, Samir S.
    Bafana, Margaret
    Ratner, Adam J.
    Meaney, Peter A.
    Malefho, Kolaatamo C. S.
    Steenhoff, Andrew P.
    INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY, 2009, 30 (08) : 782 - 785
  • [27] Analysis of methicillin-resistant Staphylococcus aureus major clonal lineages by Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS)
    Zhang, Tingting
    Ding, Jinya
    Rao, Xiancai
    Yu, Jingbo
    Chu, Meiling
    Ren, Wei
    Wang, Lu
    Xue, Wencheng
    JOURNAL OF MICROBIOLOGICAL METHODS, 2015, 117 : 122 - 127
  • [28] Staphylococcal Enterotoxin P Predicts Bacteremia in Hospitalized Patients Colonized With Methicillin-Resistant Staphylococcus aureus
    Calderwood, Michael S.
    Desjardins, Christopher A.
    Sakoulas, George
    Nicol, Robert
    DuBois, Andrea
    Delaney, Mary L.
    Kleinman, Ken
    Cosimi, Lisa A.
    Feldgarden, Michael
    Onderdonk, Andrew B.
    Birren, Bruce W.
    Platt, Richard
    Huang, Susan S.
    JOURNAL OF INFECTIOUS DISEASES, 2014, 209 (04) : 571 - 577
  • [29] Impact of Community-Onset Methicillin-Resistant Staphylococcus aureus on Staphylococcus aureus Bacteremia in a Central Korea Veterans Health Service Hospital
    Bae, Eunsin
    Kim, Choon Kwan
    Jang, Jung-Hyun
    Sung, Heungsup
    Choi, YounMi
    Kim, Mi-Na
    ANNALS OF LABORATORY MEDICINE, 2019, 39 (02) : 158 - 166
  • [30] Methicillin-Resistant Staphylococcus aureus in Ghana: Past, Present, and Future
    Donkor, Eric S.
    Dayie, Nicholas T. K. D.
    Tette, Edem M. A.
    MICROBIAL DRUG RESISTANCE, 2019, 25 (05) : 717 - 724