On integral forms for vertex algebras associated with affine Lie algebras and lattices

被引:11
作者
McRae, Robert [1 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
关键词
MODULAR MOONSHINE; OPERATOR-ALGEBRAS; INVARIANT;
D O I
10.1016/j.jpaa.2014.06.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We revisit the construction of integral forms for vertex (operator) algebras V-L based on even lattices L using generators instead of bases, and we construct integral forms, for V-L-modules. We construct integral forms for vertex (operator) algebras based on highest-weight modules for affine Lie algebras and we exhibit natural generating sets. For vertex operator algebras in general, we give conditions showing when an integral form contains the standard conformal vector generating the Virasoro algebra. Finally, we study integral forms in contragredients of modules for vertex algebras. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1236 / 1257
页数:22
相关论文
共 18 条
[1]  
[Anonymous], ARXIV10124193
[3]   Modular moonshine, III [J].
Borcherds, RE .
DUKE MATHEMATICAL JOURNAL, 1998, 93 (01) :129-154
[4]   Modular moonshine .2. [J].
Borcherds, RE ;
Ryba, AJE .
DUKE MATHEMATICAL JOURNAL, 1996, 83 (02) :435-459
[5]  
Dong C., 1993, PROG MATH, V112
[6]   Integral forms in vertex operator algebras which are invariant under finite groups [J].
Dong, Chongying ;
Griess, Robert L., Jr. .
JOURNAL OF ALGEBRA, 2012, 365 :184-198
[7]  
Frenkel I., 1988, Vertex Operator Algebras and the Monster
[8]  
Frenkel I., 1992, DUKE MATH J, V66, P1
[9]  
Frenkel I.B., 1993, MEM AM MATH SOC, V104
[10]  
Garland H., 1978, J ALGEBRA, V53, P490