Anabaena sensory rhodopsin:: A photochromic color 0 sensor at 2.0 Å

被引:181
作者
Vogeley, L
Sineshchekov, OA
Trivedi, VD
Sasaki, J
Spudich, JL [1 ]
Luecke, H
机构
[1] Univ Texas, Sch Med, Dept Biochem & Mol Biol, Ctr Membrane Biol, Houston, TX 77030 USA
[2] Univ Texas, Sch Med, Dept Microbiol & Mol Genet, Houston, TX 77030 USA
[3] Moscow MV Lomonosov State Univ, Dept Biol, Moscow, Russia
[4] Univ Calif Irvine, Dept Mol Biol & Biochem, Irvine, CA 92697 USA
[5] Univ Calif Irvine, Dept Physiol & Biophys, Irvine, CA 92697 USA
[6] Univ Calif Irvine, Dept Informat & Comp Sci, Irvine, CA 92697 USA
关键词
D O I
10.1126/science.1103943
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Microbial sensory rhodopsins are a family of membrane-embedded photoreceptors in prokaryotic and eukaryotic organisms. Structures of archaeal rhodopsins, which function as light-driven ion pumps or photosensors, have been reported. We present the structure of a eubacterial rhodopsin, which differs from those of previously characterized archaeal rhodopsins in its chromophore and cytoplasmic-side portions. Anabaena sensory rhodopsin exhibits light-induced interconversion between stable 13-cis and all-trans states of the retinylidene protein. The ratio of its cis and trans chromophore forms depends on the wavelength of illumination, thus providing a mechanism for a single protein to signal the color of light, for example, to regulate color-sensitive processes such as chromatic adaptation in photosynthesis. Its cytoplasmic half channel, highly hydrophobic in the archaeal rhodopsins, contains numerous hydrophilic residues networked by water molecules, providing a connection from the photoactive site to the cytoplasmic surface believed to interact with the receptor's soluble 14-kilodalton transducer.
引用
收藏
页码:1390 / 1393
页数:4
相关论文
共 23 条
[1]   Bacterial rhodopsin:: Evidence for a new type of phototrophy in the sea [J].
Béjà, O ;
Aravind, L ;
Koonin, EV ;
Suzuki, MT ;
Hadd, A ;
Nguyen, LP ;
Jovanovich, S ;
Gates, CM ;
Feldman, RA ;
Spudich, JL ;
Spudich, EN ;
DeLong, EF .
SCIENCE, 2000, 289 (5486) :1902-1906
[2]   Structural and functional characterization of π bulges and other short intrahelical deformations [J].
Cartailler, JP ;
Luecke, H .
STRUCTURE, 2004, 12 (01) :133-144
[3]  
Gartner W., 2000, Handbook of biological physics, P297
[4]   Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex [J].
Gordeliy, VI ;
Labahn, J ;
Moukhametzianov, R ;
Efremov, R ;
Granzin, J ;
Schlesinger, R ;
Büldt, G ;
Savopol, T ;
Scheidig, AJ ;
Klare, JP ;
Engelhard, M .
NATURE, 2002, 419 (6906) :484-487
[5]   Tracking the light environment by cyanobacteria and the dynamic nature of light harvesting [J].
Grossman, AR ;
Bhaya, D ;
He, QF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (15) :11449-11452
[6]   Light perception and signalling in higher plants [J].
Gyula, N ;
Schäfer, E ;
Nagy, F .
CURRENT OPINION IN PLANT BIOLOGY, 2003, 6 (05) :446-452
[7]   Demonstration of a sensory rhodopsin in eubacteria [J].
Jung, KH ;
Trivedi, VD ;
Spudich, JL .
MOLECULAR MICROBIOLOGY, 2003, 47 (06) :1513-1522
[8]   Structure of the light-driven chloride pump halorhodopsin at 1.8 Å resolution [J].
Kolbe, M ;
Besir, H ;
Essen, LO ;
Oesterhelt, D .
SCIENCE, 2000, 288 (5470) :1390-1396
[9]   Crystal structure of sensory rhodopsin II at 2.4 angstroms: Insights into color tuning and transducer interaction [J].
Luecke, H ;
Schobert, B ;
Lanyi, JK ;
Spudich, EN ;
Spudich, JL .
SCIENCE, 2001, 293 (5534) :1499-1503
[10]   Proton transfer pathways in bacteriorhodopsin at 2.3 Angstrom resolution [J].
Luecke, H ;
Richter, HT ;
Lanyi, JK .
SCIENCE, 1998, 280 (5371) :1934-1937