Periodic kinks in reaction-diffusion systems

被引:0
作者
Gordon, PV [1 ]
Vakulenko, SA [1 ]
机构
[1] Russian Acad Sci, Inst Problems Mech Engn, St Petersburg 199178, Russia
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1998年 / 31卷 / 03期
关键词
D O I
10.1088/0305-4470/31/3/001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this letter we show that, in nonlinear dissipative homogeneous media, a new effect is possible: the propagation of nonlinear waves (kinks) with time periodic rates. Our example is a reaction-diffusion system consisting of equations of Ginzburg-Landau's type.
引用
收藏
页码:L67 / L70
页数:4
相关论文
共 8 条
[1]   NONPERSISTENCE OF BREATHER FAMILIES FOR THE PERTURBED SINE-GORDON EQUATION [J].
DENZLER, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 158 (02) :397-430
[2]  
FIFE PC, 1977, ARCH RATION MECH AN, V65, P335, DOI 10.1007/BF00250432
[3]   The wave of advance of advantageous genes [J].
Fisher, RA .
ANNALS OF EUGENICS, 1937, 7 :355-369
[4]  
Henry D., 1981, GEOMETRIC THEORY SEM
[5]  
Kolmogorov A., 1937, Bull. Moscow State Univ. Ser. A: Math. Mech, V1, P1
[6]   THE OSCILLATING WAVE FRONTS [J].
VAKULENKO, SA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 19 (11) :1033-1046
[7]  
VAKULENKO SA, 1991, ZH VYCH MAT MAT FIZ, V31, P735
[8]  
Volpert V. A., 1996, NONLINEAR WORLD, V3, P159