MGR-DCB: A Precise Model for Multi-Constellation GNSS Receiver Differential Code Bias

被引:13
作者
Abdelazeem, Mohamed [1 ,2 ]
Celik, Rahmi N. [1 ]
El-Rabbany, Ahmed [2 ]
机构
[1] Istanbul Tech Univ, Geomat Engn Dept, Istanbul, Turkey
[2] Ryerson Univ, Civil Engn Dept, Toronto, ON, Canada
关键词
Multi-Constellation GNSS; Differential Code Bias; INSTRUMENTAL BIASES; IONOSPHERIC DELAY; BEIDOU;
D O I
10.1017/S0373463315000922
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
In this study, we develop a Multi-constellation Global Navigation Satellite System (GNSS) Receiver Differential Code Bias (MGR-DCB) model. The model estimates the receiver DCBs for the Global Positioning System (GPS), BeiDou and Galileo signals from the ionosphere-corrected geometry-free linear combinations of the code observations. In order to account for the ionospheric delay, a Regional Ionospheric Model (RIM) over Europe is developed. GPS observations from 60 International GNSS Servoce (IGS) and EUREF reference stations are processed in the Bernese-52 Precise Point Positioning (PPP) module to estimate the Vertical Total Electron Content (VTEC). The RIM has spatial and temporal resolutions of 1 degrees x 1 degrees and 15 minutes, respectively. The receiver DCBs for three stations from the International GNSS Service Multi-GNSS Experiment (IGS-MGEX) are estimated for three different days. The estimated DCBs are compared with the MGEX published values. The results show agreement with the MGEX values with mean difference and Root Mean Square Error (RMSE) values less than 1 ns. In addition, the combined GPS, BeiDou and Galileo VTEC values are evaluated and compared with the IGS Global Ionospheric Maps (IGS-GIM) counterparts. The results show agreement with the GIM values with mean difference and RMSE values less than 1 Total Electron Content Unit (TECU).
引用
收藏
页码:698 / 708
页数:11
相关论文
共 19 条
[1]  
Abdelazeem M., 2015, J NAVIGATION
[2]  
[Anonymous], 1999, MAPPING PREDICTING E
[3]   Estimation of single station interfrequency receiver bias using GPS-TEC [J].
Arikan, F. ;
Nayir, H. ;
Sezen, U. ;
Arikan, O. .
RADIO SCIENCE, 2008, 43 (04)
[4]   Eistimation and analysis of GPS receiver differential code biases using KGN in Korean Peninsula [J].
Choi, B. K. ;
Cho, J. H. ;
Lee, S. J. .
ADVANCES IN SPACE RESEARCH, 2011, 47 (09) :1590-1599
[5]  
Dach R., 2007, BERNESE GPS SOFTWARE
[6]   M_DCB: Matlab code for estimating GNSS satellite and receiver differential code biases [J].
Jin, Rui ;
Jin, Shuanggen ;
Feng, Guiping .
GPS SOLUTIONS, 2012, 16 (04) :541-548
[7]  
Julien O, 2012, I NAVIG SAT DIV INT, P286
[8]   Factors affecting the estimation of GPS receiver instrumental biases [J].
Kao, S. ;
Tu, Y. ;
Chen, W. ;
Weng, D. J. ;
Ji, S. Y. .
SURVEY REVIEW, 2013, 44 (328) :59-67
[9]   A new algorithm for single receiver DCB estimation using IGS TEC maps [J].
Keshin, Maxim .
GPS SOLUTIONS, 2012, 16 (03) :283-292
[10]   Two-step method for the determination of the differential code biases of COMPASS satellites [J].
Li, Zishen ;
Yuan, Yunbin ;
Li, Hui ;
Ou, Jikun ;
Huo, Xingliang .
JOURNAL OF GEODESY, 2012, 86 (11) :1059-1076