Maximal complements in finite groups

被引:0
作者
Quick, Martyn [1 ]
机构
[1] Math Inst, Sch Math & Stat, St Andrews KY16 9SS, Fife, Scotland
基金
英国工程与自然科学研究理事会;
关键词
complements; finite groups; maximal subgroups;
D O I
10.1080/00927870601142306
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group with a non-Abelian minimal normal subgroup N which is a direct product of copies of the simple group X. A parametrization is given for the conjugacy classes of maximal subgroups of G which complement N in terms of certain homomorphisms taking values in Aut X.
引用
收藏
页码:1263 / 1273
页数:11
相关论文
共 10 条
[1]   MAXIMAL-SUBGROUPS OF FINITE-GROUPS [J].
ASCHBACHER, M ;
SCOTT, L .
JOURNAL OF ALGEBRA, 1985, 92 (01) :44-80
[2]  
BADDELEY RW, 1993, P LOND MATH SOC, V67, P547
[3]   THE PROBABILITY OF GENERATING CERTAIN PROFINITE GROUPS BY 2 ELEMENTS [J].
BHATTACHARJEE, M .
ISRAEL JOURNAL OF MATHEMATICS, 1994, 86 (1-3) :311-329
[4]   Computing maximal subgroups of finite groups [J].
Cannon, J ;
Holt, DF .
JOURNAL OF SYMBOLIC COMPUTATION, 2004, 37 (05) :589-609
[5]  
JAIKINZAPIRAIN A, RANDOM GENERATION FI
[6]   MAXIMAL-SUBGROUPS IN COMPOSITE FINITE-GROUPS [J].
KOVACS, LG .
JOURNAL OF ALGEBRA, 1986, 99 (01) :114-131
[7]   Maximal complements in wreath products [J].
Parker, C ;
Quick, M .
JOURNAL OF ALGEBRA, 2003, 266 (01) :320-337
[8]   Probabilistic generation of wreath products of non-abelian finite simple groups [J].
Quick, M .
COMMUNICATIONS IN ALGEBRA, 2004, 32 (12) :4753-4768
[9]   Probabilistic generation of wreath products of non-Abelian finite simple groups, II [J].
Quick, Martyn .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2006, 16 (03) :493-503
[10]  
WILSON RA, 1985, J LOND MATH SOC, V32, P460