Transient Feature Extraction Based on Time-Frequency Manifold Image Synthesis for Machinery Fault Diagnosis

被引:27
|
作者
Ding, Xiaoxi [1 ]
He, Qingbo [2 ]
Shao, Yimin [1 ]
Huang, Wenbin [1 ]
机构
[1] Chongqing Univ, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R China
[2] Shanghai Jiao Tong Univ, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Transient analysis; Feature extraction; Manifolds; Noise reduction; Histograms; Image coding; Histogram matching; image compression; image synthesis; time-frequency manifold (TFM); transient feature extraction; MATCHING PURSUIT; ALGORITHM;
D O I
10.1109/TIM.2018.2890316
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Fault diagnosis of rotating machinery is crucial to the safety management of the equipment. However, the weaker intrinsic features are generally submerged in the strong noise interference and modulated to multiple frequency scales, which will weaken the extraction and identification of the transient features. To enhance the transient features, a method called time-frequency manifold image synthesis (TFMIS) is proposed in this paper. By inheriting and promoting the merits of time-frequency manifold (TFM) in feature enhancement and in-band noise suppression, the proposed method contributes on the natural compression and enhancement of the time-frequency transient features in the view of the image processing. First, the raw time-frequency image (TFI) is compressed by the 2-D discrete wavelet transform with the principal structure remained. These approximation sub-TFIs are later used to achieve a fast TFM learning process. Then, a relationship between the global TFI and the local TFM can be adaptively built by using the histogram concept with the probability distribution property demarcated. Thereupon, the proposed method can enhance a global manifold transient structure with a matching rule built from the local TFM. Consequently, by a series of inverse transformations, a TFMIS scheme is constructed for the transient feature extraction in a self-learning process. Two case studies, including bearing and gear transient feature extraction, confirm the performance of the proposed method in achieving rather high-contrast results for the natural transients, and more precise results for the fault frequency identification in detection of periodic transient signals.
引用
收藏
页码:4242 / 4252
页数:11
相关论文
共 50 条
  • [41] Bearing Fault Diagnosis Based on Subband Time-Frequency Texture Tensor
    Bo, Lin
    Xu, Guanji
    Liu, Xiaofeng
    Lin, Jing
    IEEE ACCESS, 2019, 7 : 37611 - 37619
  • [42] Hilbert time-frequency spectrum feature extraction method
    Wei J.
    Gu X.
    Ning F.
    1600, Huazhong University of Science and Technology (49): : 50 - 54
  • [43] Time-frequency synthesis analysis for complex signal of rotating machinery via variational mode manifold reinforcement learning
    Li, Quanchang
    Ding, Xiaoxi
    Wang, Tao
    Zhang, Mingkai
    Huang, Wenbin
    Shao, Yimin
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2020, 234 (07) : 1438 - 1455
  • [44] Time-frequency audio feature extraction based on tensor representation of sparse coding
    Zhang, Xue-Yuan
    He, Qian-Hua
    ELECTRONICS LETTERS, 2015, 51 (02) : 131 - U20
  • [45] Dynamic Feature Extraction of Power Disturbance Signal Based on Time-frequency Technology
    Wang Yuguo
    Zhao Wei
    Xie Yan
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 2300 - 2303
  • [46] Rotating Machinery Fault Diagnosis Method by Combining Time-Frequency Domain Features and CNN Knowledge Transfer
    Ye, Lihao
    Ma, Xue
    Wen, Chenglin
    SENSORS, 2021, 21 (24)
  • [47] Radar Emitter Signal Feature Extraction Based on Time-Frequency Atom Decomposition
    Li, Jungang
    Chen, Zhuyu
    Yang, Ji
    MANUFACTURING PROCESS AND EQUIPMENT, PTS 1-4, 2013, 694-697 : 1317 - 1320
  • [48] Time-frequency domain feature extraction algorithm based on linear discriminant analysis
    Liu L.
    Yang H.
    Qi X.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2019, 41 (10): : 2184 - 2190
  • [49] Radar Emitter Sorting and Recognition Based on Time-frequency Image Union Feature
    Wang Gongming
    Chen Shiwen
    Hu Xueruobai
    Yuan Junjian
    2019 IEEE 4TH INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP 2019), 2019, : 165 - 170
  • [50] Research on Extraction Method of Time-Frequency Feature of Human Motion
    Wang Tianrun
    Su Zhong
    Li Chao
    Liu Ning
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 704 - 708