Transient Feature Extraction Based on Time-Frequency Manifold Image Synthesis for Machinery Fault Diagnosis

被引:27
|
作者
Ding, Xiaoxi [1 ]
He, Qingbo [2 ]
Shao, Yimin [1 ]
Huang, Wenbin [1 ]
机构
[1] Chongqing Univ, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R China
[2] Shanghai Jiao Tong Univ, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Transient analysis; Feature extraction; Manifolds; Noise reduction; Histograms; Image coding; Histogram matching; image compression; image synthesis; time-frequency manifold (TFM); transient feature extraction; MATCHING PURSUIT; ALGORITHM;
D O I
10.1109/TIM.2018.2890316
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Fault diagnosis of rotating machinery is crucial to the safety management of the equipment. However, the weaker intrinsic features are generally submerged in the strong noise interference and modulated to multiple frequency scales, which will weaken the extraction and identification of the transient features. To enhance the transient features, a method called time-frequency manifold image synthesis (TFMIS) is proposed in this paper. By inheriting and promoting the merits of time-frequency manifold (TFM) in feature enhancement and in-band noise suppression, the proposed method contributes on the natural compression and enhancement of the time-frequency transient features in the view of the image processing. First, the raw time-frequency image (TFI) is compressed by the 2-D discrete wavelet transform with the principal structure remained. These approximation sub-TFIs are later used to achieve a fast TFM learning process. Then, a relationship between the global TFI and the local TFM can be adaptively built by using the histogram concept with the probability distribution property demarcated. Thereupon, the proposed method can enhance a global manifold transient structure with a matching rule built from the local TFM. Consequently, by a series of inverse transformations, a TFMIS scheme is constructed for the transient feature extraction in a self-learning process. Two case studies, including bearing and gear transient feature extraction, confirm the performance of the proposed method in achieving rather high-contrast results for the natural transients, and more precise results for the fault frequency identification in detection of periodic transient signals.
引用
收藏
页码:4242 / 4252
页数:11
相关论文
共 50 条
  • [1] Fast time-frequency manifold learning and its reconstruction for transient feature extraction in rotating machinery fault diagnosis
    Ding, Xiaoxi
    Li, Quanchang
    Lin, Lun
    He, Qingbo
    Shao, Yimin
    MEASUREMENT, 2019, 141 : 380 - 395
  • [2] Time-frequency manifold sparse reconstruction: A novel method for bearing fault feature extraction
    Ding, Xiaoxi
    He, Qingbo
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2016, 80 : 392 - 413
  • [3] Rolling bearing fault diagnosis method by using feature extraction of convolutional time-frequency image
    Hou, Junjian
    Lu, Xikang
    Zhong, Yudong
    He, Wenbin
    Zhao, Dengfeng
    Zhou, Fang
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2024, 238 (09) : 4212 - 4228
  • [4] Rolling Bearing Fault Diagnosis Based on Time-Frequency Feature Extraction and IBA-SVM
    Zhang, Mei
    Yin, Jun
    Chen, Wanli
    IEEE ACCESS, 2022, 10 : 85641 - 85654
  • [5] Gearbox Fault Diagnosis based on Time-frequency Domain Synchronous Averaging and Feature Extraction Technique
    Zhang, Shengli
    Tang, Jiong
    NONDESTRUCTIVE CHARACTERIZATION AND MONITORING OF ADVANCED MATERIALS, AEROSPACE, AND CIVIL INFRASTRUCTURE 2016, 2016, 9804
  • [6] Sparse representation based on local time-frequency template matching for bearing transient fault feature extraction
    He, Qingbo
    Ding, Xiaoxi
    JOURNAL OF SOUND AND VIBRATION, 2016, 370 : 424 - 443
  • [7] Multi-Domain Time-Frequency Fusion Feature Contrastive Learning for Machinery Fault Diagnosis
    Wei, Yang
    Wang, Kai
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 1116 - 1120
  • [8] Application of Time-Frequency Analysis in Rotating Machinery Fault Diagnosis
    Bai, Yihao
    Cheng, Weidong
    Wen, Weigang
    Liu, Yang
    SHOCK AND VIBRATION, 2023, 2023
  • [9] Early bearing fault feature extraction based on CEMP time-frequency features
    Zhang Z.
    Mei J.
    Zhao H.
    Chang C.
    Shen H.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (19): : 168 - 173
  • [10] Time-Frequency Analysis-Based Transient Harmonic Feature Extraction for Load Monitoring
    Xia, Peng
    Zhou, Hao
    Jiang, Shenyao
    Deng, Fan
    Liu, Zhi
    Li, Xiang-Yang
    2022 IEEE 28TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, ICPADS, 2022, : 49 - 56