Ultra-high resistive switching mechanism induced by oxygen ion accumulation on nitrogen-doped resistive random access memory

被引:27
作者
Chu, Tian-Jian [1 ]
Tsai, Tsung-Ming [1 ]
Chang, Ting-Chang [2 ]
Chang, Kuan-Chang [1 ]
Pan, Chih-Hung [1 ]
Chen, Kai-Huang [3 ]
Chen, Jung-Hui [4 ]
Chen, Hsin-Lu [5 ]
Huang, Hui-Chun [1 ]
Shih, Chih-Cheng [1 ]
Syu, Yong-En [2 ]
Zheng, Jin-Cheng [6 ]
Sze, Simon M. [2 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Mat & Optoelect Sci, Kaohsiung 80424, Taiwan
[2] Natl Sun Yat Sen Univ, Dept Phys, Kaohsiung 80424, Taiwan
[3] Tung Fang Design Inst, Dept Elect Engn & Comp Sci, Kaohsiung 82941, Taiwan
[4] Natl Kaohsiung Normal Univ, Dept Chem, Kaohsiung 82446, Taiwan
[5] Natl Sun Yat Sen Univ, Dept Mech & Electromech Engn, Kaohsiung 80424, Taiwan
[6] Xiamen Univ, Dept Phys, Xiamen 361005, Fujian, Peoples R China
关键词
HOPPING CONDUCTION; HIGH-PERFORMANCE; OXIDE; HYDROGEN; RRAM; IMPROVEMENT; ORIGIN; RERAM;
D O I
10.1063/1.4902503
中图分类号
O59 [应用物理学];
学科分类号
摘要
This study presents the dual bipolar resistive switching characteristics induced by oxygen-ion accumulation. By introducing nitrogen to the interface between the resistive switching region and active switching electrode, filament-type and interface-type resistive switching behaviors can both exist under different operation conditions. This particular oxygen-ion accumulation-induced switching behavior suggests an extraordinary potential for resistive random access memory applications because the operating power can be significantly decreased (about 100 times). The physical mechanism of this oxygen-ion accumulation-induced interface-type resistive switching behavior is explained by our model and clarified by current conduction mechanism and material analysis. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 44 条
[11]   Charge Quantity Influence on Resistance Switching Characteristic During Forming Process [J].
Chu, Tian-Jian ;
Chang, Ting-Chang ;
Tsai, Tsung-Ming ;
Wu, Hsing-Hua ;
Chen, Jung-Hui ;
Chang, Kuan-Chang ;
Young, Tai-Fa ;
Chen, Kai-Hsang ;
Syu, Yong-En ;
Chang, Geng-Wei ;
Chang, Yao-Feng ;
Chen, Min-Chen ;
Lou, Jyun-Hao ;
Pan, Jhih-Hong ;
Chen, Jian-Yu ;
Tai, Ya-Hsiang ;
Ye, Cong ;
Wang, Hao ;
Sze, Simon M. .
IEEE ELECTRON DEVICE LETTERS, 2013, 34 (04) :502-504
[12]   Bipolar resistive switching characteristics of Al-doped zinc tin oxide for nonvolatile memory applications [J].
Fan, Yang-Shun ;
Liu, Po-Tsun ;
Teng, Li-Feng ;
Hsu, Ching-Hui .
APPLIED PHYSICS LETTERS, 2012, 101 (05)
[13]   Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide [J].
Guan, Weihua ;
Long, Shibing ;
Jia, Rui ;
Liu, Ming .
APPLIED PHYSICS LETTERS, 2007, 91 (06)
[14]   Nonpolar nonvolatile resistive switching in Cu doped ZrO2 [J].
Guan, Weihua ;
Long, Shibing ;
Liu, Qi ;
Liu, Ming ;
Wang, Wei .
IEEE ELECTRON DEVICE LETTERS, 2008, 29 (05) :434-437
[15]   Multilevel resistive switching memory with amorphous InGaZnO-based thin film [J].
Hsu, Ching-Hui ;
Fan, Yang-Shun ;
Liu, Po-Tsun .
APPLIED PHYSICS LETTERS, 2013, 102 (06)
[16]   ZnO1-x Nanorod Arrays/ZnO Thin Film Bilayer Structure: From Homojunction Diode and High-Performance Memristor to Complementary 1D1R Application [J].
Huang, Chi-Hsin ;
Huang, Jian-Shiou ;
Lin, Shih-Ming ;
Chang, Wen-Yuan ;
He, Jr-Hau ;
Chueh, Yu-Lun .
ACS NANO, 2012, 6 (09) :8407-8414
[17]   High-performance gate-all-around polycrystalline silicon nanowire with silicon nanocrystals nonvolatile memory [J].
Hung, Min-Feng ;
Wu, Yung-Chun ;
Tang, Zih-Yun .
APPLIED PHYSICS LETTERS, 2011, 98 (16)
[18]   A study of cycling induced degradation mechanisms in Si nanocrystal memory devices [J].
Jiang, Dandan ;
Zhang, Manhong ;
Huo, Zongliang ;
Wang, Qin ;
Liu, Jing ;
Yu, Zhaoan ;
Yang, Xiaonan ;
Wang, Yong ;
Zhang, Bo ;
Chen, Junning ;
Liu, Ming .
NANOTECHNOLOGY, 2011, 22 (25)
[19]   A FLOATING GATE AND ITS APPLICATION TO MEMORY DEVICES [J].
KAHNG, D ;
SZE, SM .
BELL SYSTEM TECHNICAL JOURNAL, 1967, 46 (06) :1288-+
[20]   Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process [J].
Kang, S ;
Hong, SI ;
Choe, CR ;
Park, M ;
Rim, S ;
Kim, J .
POLYMER, 2001, 42 (03) :879-887