Spray combustion of biomass-based renewable diesel fuel using multiple injection strategy in a constant volume combustion chamber

被引:33
作者
Jing, Wei [1 ]
Wu, Zengyang [1 ]
Roberts, William L. [2 ]
Fang, Tiegang [1 ]
机构
[1] N Carolina State Univ, Dept Mech & Aerosp Engn, 911 Oval Dr,Campus Box 7910, Raleigh, NC 27695 USA
[2] King Abdullah Univ Sci & Technol, Clean Combust Res Ctr, Thuwal, Saudi Arabia
关键词
Biomass to liquid; BTL; Diesel; Spray combustion; Multiple-injection strategy; Two-color pyrometry; AMBIENT-TEMPERATURE; SOOT TEMPERATURE; KL FACTOR; ENGINE; BIODIESEL; EMISSIONS; PERFORMANCE; IMPACT; CYLINDER; LIQUID;
D O I
10.1016/j.fuel.2016.05.039
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Effect of a two-injection strategy associated with a pilot injection on the spray combustion process was investigated under conventional diesel combustion conditions (1000 K and 21% O-2 concentration) for a biomass-based renewable diesel fuel, i.e., biomass to liquid (BTL), and a regular No. 2 diesel in a constant volume combustion chamber using multiband flame measurement and two-color pyrometry. The spray combustion flame structure was visualized by using multiband flame measurement to show features of soot formation, high temperature and low temperature reactions, which can be characterized by the narrow-band emissions of radicals or intermediate species such as OH, HCHO, and CH. The objective of this study was to identify the details of multiple injection combustion, including a pilot and a main injection, and to provide further insights on how the two injections interact. For comparison, three injection strategies were considered for both fuels including a two-injection strategy (Case TI), single injection strategy A (Case SA), and single injection strategy B (Case SB). Multiband flame results show a strong interaction, indicated by OH/emissions between the pilot injection and the main injection for Case TI while very weak connection is found for the narrow-band emissions acquired through filters with centerlines of 430 nm and 470 nm. A faster flame development is found for the main injection of Case TI compared to Cases SA and SB, which could be due to the high temperature environment and large air entrainment from the pilot injection. A lower soot level is observed for the BTL flame compared to the diesel flame for all three injection types. Case TI has a lower soot level compared to Cases SA and SB for the BTL fuel, while the diesel fuel maintains a similar soot level among all three injection strategies. Soot temperature of Case TI is lower for both fuels, especially for diesel. Based on these results, it is expected that the two-injection strategy could be effective in reducing soot and NOx (due to lower combustion temperature) simultaneously compared to either of the single injection strategies. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:718 / 728
页数:11
相关论文
共 71 条
  • [1] Alternative Fuels Data Center, 2014, FUEL PROP COMP
  • [2] [Anonymous], 2013, SAE Technical Paper, DOI DOI 10.4271/2013-01-2523
  • [3] [Anonymous], 1994, 940674 SAE
  • [4] [Anonymous], 2007010030 SAE
  • [5] [Anonymous], 982685 SAE
  • [6] [Anonymous], 2009, 2009011792 SAE
  • [7] [Anonymous], 1974, The Spectroscopy of Flames
  • [8] [Anonymous], 2009011912 SAE
  • [9] [Anonymous], 2010012162 SAE
  • [10] [Anonymous], 2005013842 SAE