Convergence of Stabilized P1 Finite Element Scheme for Time Harmonic Maxwell's Equations

被引:0
|
作者
Asadzadeh, M. [1 ]
Beilina, Larisa [1 ,2 ]
机构
[1] Chalmers Univ Technol, Dept Math Sci, S-41296 Gothenburg, Sweden
[2] Univ Gothenburg, S-41296 Gothenburg, Sweden
来源
MATHEMATICAL AND NUMERICAL APPROACHES FOR MULTI-WAVE INVERSE PROBLEMS, CIRM | 2020年 / 328卷
关键词
Time harmonic Maxwell's equations; P-1 finite elements; A priori estimate; A posteriori estimate; Convergence; RECONSTRUCTION;
D O I
10.1007/978-3-030-48634-1_4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper considers the convergence study of the stabilized P1 finite element method for the time harmonic Maxwell's equations. The model problem is for the particular case of the dielectric permittivity function which is assumed to be constant in a boundary neighborhood. For the stabilized model a coercivity relation is derived that guarantee's the existence of a unique solution for the discrete problem. The convergence is addressed both in a priori and a posteriori settings. Our numerical examples validate obtained convergence results.
引用
收藏
页码:33 / 43
页数:11
相关论文
共 50 条
  • [31] A time-domain finite element scheme and its analysis for nonlinear Maxwell's equations in Kerr media
    Huang, Yunqing
    Li, Jichun
    He, Bin
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 435
  • [32] An Adaptive P 1 Finite Element Method for Two-Dimensional Maxwell's Equations
    Brenner, S. C.
    Gedicke, J.
    Sung, L. -Y.
    JOURNAL OF SCIENTIFIC COMPUTING, 2013, 55 (03) : 738 - 754
  • [33] The Weighted Edge Finite Element Method for Time-harmonic Maxwell Equations with Strong Singularity
    Rukavishnikov, Viktor
    Mosolapov, Andrey
    2014 INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY (MMET), 2014, : 148 - 151
  • [34] Hybrid finite element solutions of time dependent Maxwell's curl equations
    Feliziani, M.
    Maradei, F.
    IEEE Transactions on Magnetics, 1995, 31 (3 pt 1): : 1330 - 1335
  • [35] Time Domain Finite Element Methods for Maxwell's Equations in Three Dimensions
    Anees, Asad
    Angermann, Lutz
    2018 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM (ACES), 2018,
  • [36] Stabilized interior penalty methods for the time-harmonic Maxwell equations
    Perugia, I
    Schötzau, D
    Monk, P
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (41-42) : 4675 - 4697
  • [37] Penalty method with P1/P1 finite element approximation for the Stokes equations under the slip boundary condition
    Takahito Kashiwabara
    Issei Oikawa
    Guanyu Zhou
    Numerische Mathematik, 2016, 134 : 705 - 740
  • [38] Penalty method with P1/P1 finite element approximation for the Stokes equations under the slip boundary condition
    Kashiwabara, Takahito
    Oikawa, Issei
    Zhou, Guanyu
    NUMERISCHE MATHEMATIK, 2016, 134 (04) : 705 - 740
  • [39] Convergence of an AEFEM for time-harmonic Maxwell equations with variable coefficients
    Xie, Yingying
    Zhong, Liuqiang
    Liu, Chunmei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 372
  • [40] Convergence analysis of ahp-finite element approximation of the time-harmonic Maxwell equations with impedance boundary conditions in domains with an analytic boundary
    Nicaise, Serge
    Tomezyk, Jerome
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2020, 36 (06) : 1868 - 1903