Convergence of Stabilized P1 Finite Element Scheme for Time Harmonic Maxwell's Equations

被引:0
|
作者
Asadzadeh, M. [1 ]
Beilina, Larisa [1 ,2 ]
机构
[1] Chalmers Univ Technol, Dept Math Sci, S-41296 Gothenburg, Sweden
[2] Univ Gothenburg, S-41296 Gothenburg, Sweden
来源
MATHEMATICAL AND NUMERICAL APPROACHES FOR MULTI-WAVE INVERSE PROBLEMS, CIRM | 2020年 / 328卷
关键词
Time harmonic Maxwell's equations; P-1 finite elements; A priori estimate; A posteriori estimate; Convergence; RECONSTRUCTION;
D O I
10.1007/978-3-030-48634-1_4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper considers the convergence study of the stabilized P1 finite element method for the time harmonic Maxwell's equations. The model problem is for the particular case of the dielectric permittivity function which is assumed to be constant in a boundary neighborhood. For the stabilized model a coercivity relation is derived that guarantee's the existence of a unique solution for the discrete problem. The convergence is addressed both in a priori and a posteriori settings. Our numerical examples validate obtained convergence results.
引用
收藏
页码:33 / 43
页数:11
相关论文
共 50 条
  • [1] A stabilized P1 domain decomposition finite element method for time harmonic Maxwell's equations
    Asadzadeh, M.
    Beilina, L.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 204 : 556 - 574
  • [2] Convergence of Explicit P1 Finite-Element Solutions to Maxwell's Equations
    Beilina, Larisa
    Ruas, V.
    MATHEMATICAL AND NUMERICAL APPROACHES FOR MULTI-WAVE INVERSE PROBLEMS, CIRM, 2020, 328 : 91 - 103
  • [3] A stabilized finite element method on nonaffine grids for time-harmonic Maxwell's equations
    Du, Zhijie
    Duan, Huoyuan
    BIT NUMERICAL MATHEMATICS, 2023, 63 (04)
  • [4] A stabilized finite element method on nonaffine grids for time-harmonic Maxwell’s equations
    Zhijie Du
    Huoyuan Duan
    BIT Numerical Mathematics, 2023, 63
  • [5] An Adaptive P1 Finite Element Method for Two-Dimensional Maxwell’s Equations
    S. C. Brenner
    J. Gedicke
    L.-Y. Sung
    Journal of Scientific Computing, 2013, 55 : 738 - 754
  • [6] CONVERGENCE AND OPTIMALITY OF ADAPTIVE EDGE FINITE ELEMENT METHODS FOR TIME-HARMONIC MAXWELL EQUATIONS
    Zhong, Liuqiang
    Chen, Long
    Shu, Shi
    Wittum, Gabriel
    Xu, Jinchao
    MATHEMATICS OF COMPUTATION, 2012, 81 (278) : 623 - 642
  • [7] Convergence analysis of adaptive edge finite element method for variable coefficient time-harmonic Maxwell's equations
    He, Bin
    Yang, Wei
    Wang, Hao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 376
  • [8] Finite element convergence for the Darwin model to Maxwell's equations
    Ciarlet, P
    Zou, J
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1997, 31 (02): : 213 - 249
  • [9] Finite elements for the time harmonic Maxwell's equations
    Boffi, D
    COMPUTATIONAL ELECTROMAGNETICS, 2003, 28 : 11 - +
  • [10] A stabilized P1/P1 finite element for the mechanical analysis of solid metals
    Feulvarch, E.
    El Sayed, H. Amin
    Roux, J. -C.
    Bergheau, J. -M.
    INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2017, 10 (01) : 3 - 14