Quicker and More Zn2+ Storage Predominantly from the Interface

被引:132
作者
Dai, Yuhang [1 ]
Liao, Xiaobin [2 ]
Yu, Ruohan [1 ,3 ]
Li, Jinghao [1 ]
Li, Jiantao [1 ]
Tan, Shuangshuang [1 ]
He, Pan [1 ]
An, Qinyou [1 ]
Wei, Qiulong [4 ]
Chen, Lineng [1 ]
Hong, Xufeng [1 ]
Zhao, Kangning [1 ]
Ren, Yang [5 ]
Wu, Jinsong [3 ]
Zhao, Yan [2 ]
Mai, Liqiang [1 ]
机构
[1] Wuhan Univ Technol, Int Sch Mat Sci & Engn, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Peoples R China
[3] Wuhan Univ Technol, Nanostruct Res Ctr, Wuhan 430070, Peoples R China
[4] Xiamen Univ, Coll Mat, Fujian Key Lab Mat Genome, Xiamen 361005, Peoples R China
[5] Argonne Natl Lab, Xray Sci Div, Lemont, IL 60439 USA
基金
中国国家自然科学基金;
关键词
aqueous zinc‐ ion batteries; decoupled electron; ion transport; heterostructures; interface pseudocapacitance; interface‐ dominated storage; ENERGY-STORAGE; SODIUM STORAGE; INTERCALATION; TRANSITION; BATTERY;
D O I
10.1002/adma.202100359
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Aqueous zinc-ion batteries are highly desirable for large-scale energy storage because of their low cost and high-level safety. However, achieving high energy and high power densities simultaneously is challenging. Herein, a VOx sub-nanometer cluster/reduced graphene oxide (rGO) cathode material composed of interfacial V-O-C bonds is artificially constructed. Therein, a new mechanism is revealed, where Zn2+ ions are predominantly stored at the interface between VOx and rGO, which causes anomalous valence changes compared to conventional mechanisms and exploits the storage ability of non-energy-storing active yet highly conductive rGO. Further, this interface-dominated storage triggers decoupled transport of electrons/Zn2+ ions, and the reversible destruction/reconstruction allows the interface to store more ions than the bulk. Finally, an ultrahigh rate capability (174.4 mAh g(-1) at 100 A g(-1), i.e., capacity retention of 39.4% for a 1000-fold increase in current density) and a high capacity (443 mAh g(-1) at 100 mA g(-1), exceeding the theoretical capacities of each interfacial component) are achieved. Such interface-dominated storage is an exciting way to build high-energy- and high-power-density devices.
引用
收藏
页数:11
相关论文
共 40 条
[11]   RAMAN EFFECT IN ZINC OXIDE [J].
DAMEN, TC ;
PORTO, SPS ;
TELL, B .
PHYSICAL REVIEW, 1966, 142 (02) :570-&
[12]   Chemical oxidation of multiwalled carbon nanotubes [J].
Datsyuk, V. ;
Kalyva, M. ;
Papagelis, K. ;
Parthenios, J. ;
Tasis, D. ;
Siokou, A. ;
Kallitsis, I. ;
Galiotis, C. .
CARBON, 2008, 46 (06) :833-840
[13]   Ultrafast Zn2+ Intercalation and Deintercalation in Vanadium Dioxide [J].
Ding, Junwei ;
Du, Zhiguo ;
Gu, Linqing ;
Li, Bin ;
Wang, Lizhen ;
Wang, Shiwen ;
Gong, Yongji ;
Yang, Shubin .
ADVANCED MATERIALS, 2018, 30 (26)
[14]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[15]   Interfacial mass storage in nanocomposites [J].
Fu, Lijun ;
Chen, Chia-Chin ;
Maier, Joachim .
SOLID STATE IONICS, 2018, 318 :54-59
[16]   Methyl-functionalized MoS2 nanosheets with reduced lattice breathing for enhanced pseudocapacitive sodium storage [J].
Huang, Lei ;
Wei, Qiulong ;
Xu, Xiaoming ;
Shi, Changwei ;
Liu, Xue ;
Zhou, Liang ;
Mai, Liqiang .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (21) :13696-13702
[17]   2D Monolayer MoS2-Carbon Interoverlapped Superstructure: Engineering Ideal Atomic Interface for Lithium Ion Storage [J].
Jiang, Hao ;
Ren, Dayong ;
Wang, Haifeng ;
Hu, Yanjie ;
Guo, Shaojun ;
Yuan, Haiyang ;
Hu, Peijun ;
Zhang, Ling ;
Li, Chunzhong .
ADVANCED MATERIALS, 2015, 27 (24) :3687-3695
[18]   Ultrafast Zinc-Ion Diffusion Ability Observed in 6.0-Nanometer Spinel Nanodots [J].
Jiang, Le ;
Wu, Zeyi ;
Wang, Yanan ;
Tian, Wenchao ;
Yi, Zhiying ;
Cai, Cailing ;
Jiang, Yingchang ;
Hu, Linfeng .
ACS NANO, 2019, 13 (09) :10376-10385
[19]   Binder-free hierarchical VS2 electrodes for high-performance aqueous Zn ion batteries towards commercial level mass loading [J].
Jiao, Tianpeng ;
Yang, Qi ;
Wu, Shuilin ;
Wang, Zifeng ;
Chen, Da ;
Shen, Dong ;
Liu, Bin ;
Cheng, Junye ;
Li, Hongfei ;
Ma, Longtao ;
Zhi, Chunyi ;
Zhang, Wenjun .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (27) :16330-16338
[20]  
Kundu D, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2016.119, 10.1038/nenergy.2016.119]