L∞ NORM ERROR ESTIMATES FOR HDG METHODS APPLIED TO THE POISSON EQUATION WITH AN APPLICATION TO THE DIRICHLET BOUNDARY CONTROL PROBLEM

被引:4
作者
Chen, Gang [1 ]
Monk, Peter B. [2 ]
Zhang, Yangwen [2 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu, Sichuan, Peoples R China
[2] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
基金
美国国家科学基金会; 中国国家自然科学基金; 中国博士后科学基金;
关键词
L-infinity error analysis; HDG method; Dirichlet boundary control; DISCONTINUOUS GALERKIN METHOD; FINITE-ELEMENT APPROXIMATIONS; NORMAL DERIVATIVES; STOKES PROBLEM; CONVERGENCE; LINFINITY;
D O I
10.1137/20M1338551
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove quasi-optimal L-infinity norm error estimates (up to logarithmic factors) for the solution of Poisson's problem in two dimensional space by the standard hybridizable discontinuous Galerkin (HDG) method. Although such estimates are available for conforming and mixed finite element methods, this is the first proof for HDG. The method of proof is motivated by known L-infinity norm estimates for mixed finite elements. We show two applications: the first is to prove optimal convergence rates for boundary flux estimates, and the second is to prove that numerically observed convergence rates for the solution of a Dirichlet boundary control problem are to be expected theoretically. Numerical examples show that the predicted rates are seen in practice.
引用
收藏
页码:720 / 745
页数:26
相关论文
共 37 条
  • [1] ERROR ESTIMATES FOR DIRICHLET CONTROL PROBLEMS IN POLYGONAL DOMAINS: QUASI-UNIFORM MESHES
    Apel, Thomas
    Mateos, Mariano
    Pfefferer, Johannes
    Roesch, Arnd
    [J]. MATHEMATICAL CONTROL AND RELATED FIELDS, 2018, 8 (01) : 217 - 245
  • [2] Regularity estimates for elliptic boundary value problems in Besov spaces
    Bacuta, C
    Bramble, JH
    Xu, JC
    [J]. MATHEMATICS OF COMPUTATION, 2003, 72 (244) : 1577 - 1595
  • [3] Chen G., 2019, ARXIV190507383MATHNA
  • [4] Chen G, 2019, J SCI COMPUT, V81, P2188, DOI 10.1007/s10915-019-01081-3
  • [5] AN HDG METHOD FOR DIRICHLET BOUNDARY CONTROL OF CONVECTION DOMINATED DIFFUSION PDEs
    Chen, Gang
    Singler, John R.
    Zhang, Yangwen
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (04) : 1919 - 1946
  • [6] Pointwise error estimates for finite element solutions of the Stokes problem
    Chen, H
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (01) : 1 - 28
  • [7] Chen HS, 2005, MATH COMPUT, V74, P1097, DOI 10.1090/S0025-5718-04-01700-4
  • [8] An analysis of the minimal dissipation local discontinuous Galerkin method for convection-diffusion problems
    Cockburn, Bernardo
    Dong, Bo
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2007, 32 (02) : 233 - 262
  • [9] A PROJECTION-BASED ERROR ANALYSIS OF HDG METHODS
    Cockburn, Bernardo
    Gopalakrishnan, Jayadeep
    Sayas, Francisco-Javier
    [J]. MATHEMATICS OF COMPUTATION, 2010, 79 (271) : 1351 - 1367
  • [10] UNIFIED HYBRIDIZATION OF DISCONTINUOUS GALERKIN, MIXED, AND CONTINUOUS GALERKIN METHODS FOR SECOND ORDER ELLIPTIC PROBLEMS
    Cockburn, Bernardo
    Gopalakrishnan, Jayadeep
    Lazarov, Raytcho
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) : 1319 - 1365