A study of irreducible polynomials over henselian valued fields via distinguished pairs

被引:0
作者
Aghigh, K. [2 ]
Bishnoi, A.
Kumar, S.
Khanduja, S. K. [1 ]
机构
[1] IISER, Sect 81, Sas Nagar 140306, Punjab, India
[2] KN Toosi Univ Technol, Dept Math, Tehran, Iran
来源
VALUATION THEORY IN INTERACTION | 2014年
关键词
Valued fields; Non-Archimedean valued fields; Irreducible polynomials; TRANSCENDENTAL EXTENSIONS; MINIMAL PAIRS; THEOREM; ROOTS; INVARIANTS; CHAINS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give an introduction of the phenomenon of lifting with respect to residually transcendental extensions, the notion of distinguished pairs and complete distinguished chains which lead to the study of certain invariants associated to irreducible polynomials over valued fields. We give an overview of various results regarding these concepts and their applications.
引用
收藏
页码:1 / +
页数:4
相关论文
共 26 条
[1]   On chains associated with elements algebraic over a Henselian valued field [J].
Aghigh, K ;
Khanduja, SK .
ALGEBRA COLLOQUIUM, 2005, 12 (04) :607-616
[2]   On the main invariant of elements algebraic over a Henselian valued field [J].
Aghigh, K ;
Khanduja, SK .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2002, 45 :219-227
[3]   A THEOREM OF CHARACTERIZATION OF RESIDUAL TRANSCENDENTAL EXTENSIONS OF A VALUATION [J].
ALEXANDRU, V ;
POPESCU, N ;
ZAHARESCU, A .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1988, 28 (04) :579-592
[4]   MINIMAL PAIRS OF DEFINITION OF A RESIDUAL TRANSCENDENTAL EXTENSION OF A VALUATION [J].
ALEXANDRU, V ;
POPESCU, N ;
ZAHARESCU, A .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1990, 30 (02) :207-225
[5]  
Alexandru V., 1988, Rev. Roum. Math. Pures Appl., V5, P393
[6]   On extensions generated by roots of lifting polynomials [J].
Bhatia, S ;
Khanduja, SK .
MATHEMATIKA, 2002, 49 (97-98) :107-118
[7]   ON GENERALIZED SCHONEMANN POLYNOMIALS [J].
Bishnoi, Anuj ;
Khanduja, Sudesh K. .
COMMUNICATIONS IN ALGEBRA, 2013, 41 (07) :2417-2426
[8]   ON EISENSTEIN-DUMAS AND GENERALIZED SCHONEMANN POLYNOMIALS [J].
Bishnoi, Anuj ;
Khanduja, Sudesh K. .
COMMUNICATIONS IN ALGEBRA, 2010, 38 (09) :3163-3173
[9]  
Brown R, 2008, INDIAN J PURE AP MAT, V39, P403
[10]   THE MAIN INVARIANT OF A DEFECTLESS POLYNOMIAL [J].
Brown, Ron ;
Merzel, Jonathan L. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (01)