Liquid crystalline polymeric wires for selective proton transport, part 2: Ion transport in solid-state

被引:12
作者
Bogdanowicz, Krzysztof A. [1 ]
Sistat, Philippe [2 ]
Reina, Jose A. [3 ]
Giamberini, Marta [1 ]
机构
[1] Univ Rovira & Virgili, Dept Engn Quim, Ave Paisos Catalans 26, E-43007 Tarragona, Spain
[2] Univ Montpellier 2, ENSCM, CNRS, Inst Europeen Membranes,UMR 5635, Pl Eugene Bataillon,CC047, F-34095 Montpellier 5, France
[3] Univ Rovira & Virgili, Dept Quim Analit & Quim Organ, Carrer Marcelli Domingo 1, E-43007 Tarragona, Spain
关键词
Polymeric wires; Ion transport; Selective proton transport; ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; CURRENT-VOLTAGE CURVES; EXCHANGE MEMBRANE; BOUNDARY-LAYER; CONDUCTIVITY; ELECTROLYTES; HYDROGEN; LITHIUM; WATER; FUEL;
D O I
10.1016/j.polymer.2016.03.080
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A study of ion transport in a new generation of hybrid biomimetic membranes, which are based on the formation of polymeric ionic wires via exo-recognition and subsequent orientation by thermal treatment, is presented. The specific conductivity of the hybrid membranes, obtained by electrochemical impedance spectroscopy, is not strongly affected by relative humidity and temperature; the values are found around 10(-5) S/cm for all studied materials. However, in the case of ion transport observed by linear sweep voltammetry, the hybrid materials containing homeotropically oriented columns exhibited lower resistance than unoriented samples. The preferential selectivity, expressed as conductance ratio compared to proton cation, show remarkably better results for biomimetic membranes when compared to Nafion (R) 117. Low values of methanol crossover are also found. Taking into account these findings, these materials hold great promise for practical application requiring selective ion transport. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:58 / 65
页数:8
相关论文
共 30 条
[1]   Ionic transport in polyelectrolyte-filled cation-exchange membranes [J].
Agarwal, Chhavi ;
Pandey, A. K. ;
Chaudhury, Sanhita ;
Aher, V. T. ;
Patra, A. K. ;
Sastry, P. U. ;
Goswami, A. .
JOURNAL OF MEMBRANE SCIENCE, 2013, 446 :125-131
[2]   CURRENT VOLTAGE CURVES FOR ION-EXCHANGE MEMBRANES - CONTRIBUTIONS TO THE TOTAL POTENTIAL DROP [J].
AGUILELLA, VM ;
MAFE, S ;
MANZANARES, JA ;
PELLICER, J .
JOURNAL OF MEMBRANE SCIENCE, 1991, 61 :177-190
[3]   Highly conductive, methanol resistant polyelectrolyte multilayers [J].
Argun, Avni A. ;
Ashcraft, J. Nathan ;
Hammond, Paula T. .
ADVANCED MATERIALS, 2008, 20 (08) :1539-+
[4]   POLYMERS WITH IONIC-CONDUCTIVITY [J].
ARMAND, M .
ADVANCED MATERIALS, 1990, 2 (6-7) :278-286
[5]   Allyl Glycidyl Ether-Based Polymer Electrolytes for Room Temperature Lithium Batteries [J].
Barteau, Katherine P. ;
Wolffs, Martin ;
Lynd, Nathaniel A. ;
Fredrickson, Glenn H. ;
Kramer, Edward J. ;
Hawker, Craig J. .
MACROMOLECULES, 2013, 46 (22) :8988-8994
[6]  
Bureekaew S, 2009, NAT MATER, V8, P831, DOI [10.1038/NMAT2526, 10.1038/nmat2526]
[7]   Modification of ion-exchange membrane used for separation of protons and metallic cations and characterization of the membrane by current-voltage curves [J].
Chamoulaud, G ;
Bélanger, D .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2005, 281 (01) :179-187
[8]   Direct measurement of concentration distribution within the boundary layer of an ion-exchange membrane [J].
Choi, JH ;
Park, JS ;
Moon, SH .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2002, 251 (02) :311-317
[9]   Effects of electrolytes on the transport phenomena in a cation-exchange membrane [J].
Choi, JH ;
Lee, HJ ;
Moon, SH .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2001, 238 (01) :188-195
[10]   Ionic conduction of lithium, sodium and magnesium salts within organised smectic liquid crystal polymer electrolytes [J].
Dias, FB ;
Batty, SV ;
Gupta, A ;
Ungar, G ;
Voss, JP ;
Wright, PV .
ELECTROCHIMICA ACTA, 1998, 43 (10-11) :1217-1224