Global Well-Posedness for Compressible Navier-Stokes Equations with Highly Oscillating Initial Velocity

被引:15
|
作者
Chen, Qionglei [1 ]
Miao, Changxing [1 ]
Zhang, Zhifei [2 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
美国国家科学基金会;
关键词
CRITICAL SPACES; VISCOUS FLUIDS; WELLPOSEDNESS; DENSITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove global well-posedness for compressible Navier-Stokes equations in the critical functional framework with the initial data close to a stable equilibrium. This result allows us to construct global solutions for the highly oscillating initial velocity. The proof relies on a new estimate for the hyperbolic/parabolic system with convection terms. (C) 2010 Wiley Periodicals, Inc.
引用
收藏
页码:1173 / 1224
页数:52
相关论文
共 50 条
  • [1] Global Well-Posedness for the Full Compressible Navier-Stokes Equations
    Jinlu Li
    Zhaoyang Yin
    Xiaoping Zhai
    Acta Mathematica Scientia, 2022, 42 : 2131 - 2148
  • [2] GLOBAL WELL-POSEDNESS FOR THE FULL COMPRESSIBLE NAVIER-STOKES EQUATIONS
    李金禄
    殷朝阳
    翟小平
    Acta Mathematica Scientia, 2022, 42 (05) : 2131 - 2148
  • [3] Global Well-Posedness for the Full Compressible Navier-Stokes Equations
    Li, Jinlu
    Yin, Zhaoyang
    Zhai, Xiaoping
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (05) : 2131 - 2148
  • [4] GLOBAL WELL-POSEDNESS FOR THE 3D ROTATING NAVIER-STOKES EQUATIONS WITH HIGHLY OSCILLATING INITIAL DATA
    Chen, Qionglei
    Miao, Changxing
    Zhang, Zhifei
    PACIFIC JOURNAL OF MATHEMATICS, 2013, 262 (02) : 263 - 283
  • [5] Global Well-Posedness of Compressible Navier-Stokes Equations for Some Classes of Large Initial Data
    Wang, Chao
    Wang, Wei
    Zhang, Zhifei
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 213 (01) : 171 - 214
  • [6] On the global well-posedness for the compressible Navier-Stokes equations with slip boundary condition
    Shibata, Yoshihiro
    Murata, Miho
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (07) : 5761 - 5795
  • [7] Global well-posedness for the generalized Navier-Stokes-Coriolis equations with highly oscillating initial data
    Sun, Xiaochun
    Liu, Mixiu
    Zhang, Jihong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (01) : 715 - 731
  • [8] Well-posedness for the Navier-Stokes equations
    Koch, H
    Tataru, D
    ADVANCES IN MATHEMATICS, 2001, 157 (01) : 22 - 35
  • [9] LOCAL WELL-POSEDNESS OF ISENTROPIC COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH VACUUM
    Gong, Huajun
    Li, Jinkai
    Liu, Xian-Gao
    Zhang, Xiaotao
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2020, 18 (07) : 1891 - 1909
  • [10] Global well-posedness to the incompressible Navier-Stokes equations with damping
    Zhong, Xin
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2017, (62)