Application of model-based compensation methods to real-time hybrid simulation benchmark

被引:22
|
作者
Fermandois, Gaston A. [1 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Civil Engn, Av Vicuna Mackenna 3939, Santiago 8940000, Chile
关键词
Real-time hybrid simulation; Benchmark problem; Actuator dynamics; Dynamic compensation; Feedforward; Robustness; DELAY COMPENSATION; ACTUATOR DELAY; SYSTEM; FEEDFORWARD; PERFORMANCE; STABILITY; TRACKING;
D O I
10.1016/j.ymssp.2019.05.041
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Real-time hybrid simulation (RTHS) is an experimental testing technique widely used for performance evaluation of structural systems such as large buildings and bridges subjected to earthquake loading. While RTHS testing has demonstrated over the last 20 years to be an efficient and cost-effective alternative to shaking table tests, especially for large structural systems with rate-dependent behavior, accurate and stable results from this methodology are highly dependent on the test specimen, loading equipment, and controller design for dynamic compensation. This paper presents a study on the accuracy and stability of model-based compensation (MBC) approaches for the implementation of a real-time hybrid simulation benchmark problem. The controller architecture is based on feedforward compensator, designed for reference tracking, while a feedback regulator provides improved robustness for undesired disturbance and sensor noise. The results provide evidence of the improved performance of MBC controllers compared to benchmark results. Moreover, the MBC controllers surpass the benchmark controller in terms of robustness, when multiple partitioning cases and control plant uncertainty are considered in the numerical simulations. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:394 / 416
页数:23
相关论文
共 50 条
  • [1] Robust adaptive model-based compensator for the real-time hybrid simulation benchmark
    Galmez, Cristobal
    Fermandois, Gaston
    STRUCTURAL CONTROL & HEALTH MONITORING, 2022, 29 (07):
  • [2] Improving model-based compensation method for real-time hybrid simulation considering error of identified model
    Zhou, Zihao
    Li, Ning
    JOURNAL OF VIBRATION AND CONTROL, 2021, 27 (21-22) : 2523 - 2535
  • [3] Real-time hybrid testing using model-based delay compensation
    Carrion, Juan E.
    Spencer, B. F., Jr.
    SMART STRUCTURES AND SYSTEMS, 2008, 4 (06) : 809 - 828
  • [4] Model-Based Multiactuator Control for Real-Time Hybrid Simulation
    Phillips, Brian M.
    Spencer, Billie F., Jr.
    JOURNAL OF ENGINEERING MECHANICS-ASCE, 2013, 139 (02): : 219 - 228
  • [5] Evaluation of frequency evaluation index based compensation for benchmark study in real-time hybrid simulation
    Xu, Weijie
    Chen, Cheng
    Guo, Tong
    Chen, Menghui
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 130 : 649 - 663
  • [6] A model-based adaptive control method for real-time hybrid simulation
    Ning, Xizhan
    Huang, Wei
    Xu, Guoshan
    Wang, Zhen
    Zheng, Lichang
    SMART STRUCTURES AND SYSTEMS, 2023, 31 (05) : 437 - 454
  • [7] Adaptive model-based tracking control for real-time hybrid simulation
    Pei-Ching Chen
    Chia-Ming Chang
    Billie F. Spencer
    Keh-Chyuan Tsai
    Bulletin of Earthquake Engineering, 2015, 13 : 1633 - 1653
  • [8] Adaptive model-based tracking control for real-time hybrid simulation
    Chen, Pei-Ching
    Chang, Chia-Ming
    Spencer, Billie F., Jr.
    Tsai, Keh-Chyuan
    BULLETIN OF EARTHQUAKE ENGINEERING, 2015, 13 (06) : 1633 - 1653
  • [9] Kalman Filter-Based Adaptive Delay Compensation for Benchmark Problem in Real-Time Hybrid Simulation
    Ning, Xizhan
    Wang, Zhen
    Wu, Bin
    APPLIED SCIENCES-BASEL, 2020, 10 (20): : 1 - 19
  • [10] Validation of model-based adaptive control method for real-time hybrid simulation
    Ning, Xizhan
    Huang, Wei
    Xu, Guoshan
    Wang, Zhen
    Zheng, Lichang
    SMART STRUCTURES AND SYSTEMS, 2023, 31 (03) : 259 - 273