Microstructure and Phase Composition of Yttria-Stabilized Zirconia Nanofibers Prepared by High-Temperature Calcination of Electrospun Zirconium Acetylacetonate/Yttrium Nitrate/Polyacrylonitrile Fibers

被引:8
作者
Rodaev, Vyacheslav V. [1 ]
Razlivalova, Svetlana S. [1 ]
Tyurin, Alexander, I [1 ]
Zhigachev, Andrey O. [1 ]
Golovin, Yuri, I [1 ]
机构
[1] Derzhavin Tambov State Univ, Inst Nanotechnol & Nanomat, Int Naya Str 33, Tambov 392000, Russia
基金
俄罗斯基础研究基金会;
关键词
electrospinning; ceramic nanofibers; yttria doped zirconia; microstructure; phase composition; composites reinforcement; ZRO2;
D O I
10.3390/fib7100082
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
For the first time, dense nanofibers of yttria-stabilized tetragonal zirconia with diameter of ca. 140 nm were prepared by calcination of electrospun zirconium acetylacetonate/yttrium nitrate/polyacrylonitrile fibers at 1100-1300 degrees C. Ceramic filaments were characterized by scanning electron microscopy, X-ray diffractometry, and nitrogen adsorption. With a rise in the calcination temperature from 1100 to 1300 degrees C, the fine-grain structure of the nanofibers transformed to coarse-grain ones with the grain size equal to the fiber diameter. It was revealed that fully tetragonal nanofibrous zirconia may be obtained at Y2O3 concentrations in the range of 2-3 mol% at all used calcination temperatures. The addition of 2-3 mol% yttria to zirconia inhibited ZrO2 grain growth, preventing nanofibers' destruction at high calcination temperatures. Synthesized well-sintered, non-porous, yttria-stabilized tetragonal zirconia nanofibers can be considered as a promising material for composites' reinforcement, including composites with ceramic matrix.
引用
收藏
页数:8
相关论文
共 19 条
[1]   Rhodium supported on tetragonal or monoclinic ZrO2 as catalyst for the partial oxidation of methane [J].
Campa, M. C. ;
Ferraris, G. ;
Gazzoli, D. ;
Pettiti, I. ;
Pietrogiacomi, D. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2013, 142 :423-431
[2]   Electrospinning and thermal treatment of yttria doped zirconia fibres [J].
Castkova, Klara ;
Maca, Karel ;
Sekaninova, Jana ;
Nemcovsky, Jakub ;
Cihlar, Jaroslav .
CERAMICS INTERNATIONAL, 2017, 43 (10) :7581-7587
[3]  
Cheng YC, 2017, PROCEEDINGS OF 2017 8TH INTERNATIONAL CONFERENCE ON MECHANICAL AND INTELLIGENT MANUFACTURING TECHNOLOGIES (ICMIMT), P201, DOI 10.1109/ICMIMT.2017.7917464
[4]   OCCURRENCE OF METASTABLE TETRAGONAL ZIRCONIA AS A CRYSTALLITE SIZE EFFECT [J].
GARVIE, RC .
JOURNAL OF PHYSICAL CHEMISTRY, 1965, 69 (04) :1238-&
[5]   Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications [J].
Gautam, Chandkiram ;
Joyner, Jarin ;
Gautam, Amarendra ;
Rao, Jitendra ;
Vajtai, Robert .
DALTON TRANSACTIONS, 2016, 45 (48) :19194-19215
[6]   Influence of Polymorphic ZrO2 Phases and the Silver Electronic State on the Activity of Ag/ZrO2 Catalysts in the Hydrogenation of CO2 to Methanol [J].
Grabowski, R. ;
Sloczynski, J. ;
Sliwa, M. ;
Mucha, D. ;
Socha, R. P. ;
Lachowska, M. ;
Skrzypek, J. .
ACS CATALYSIS, 2011, 1 (04) :266-278
[7]   Transformation toughening in zirconia-containing ceramics [J].
Hannink, RHJ ;
Kelly, PM ;
Muddle, BC .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2000, 83 (03) :461-487
[8]   Electrospun yttria-stabilized zirconia nanofibers for low-temperature solid oxide fuel cells [J].
Koo, Ja Yang ;
Lim, Yonghyun ;
Kim, Young Beom ;
Byun, Doyoung ;
Lee, Wonyoung .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (24) :15903-15907
[9]   Controlling the Diameter of Electrospun Yttria-Stabilized Zirconia Nanofibers [J].
Koo, Ja Yang ;
Hwang, Sangyeon ;
Ahn, Minwoo ;
Choi, Mingi ;
Byun, Doyoung ;
Lee, Wonyoung .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2016, 99 (09) :3146-3150
[10]   Simple and Low-Cost Plasmonic Fiber-Optic Probe as SERS and Biosensing Platform [J].
Liu, Yun ;
Guang, Jianye ;
Liu, Chuan ;
Bi, Sheng ;
Liu, Qiang ;
Li, Ping ;
Zhang, Ning ;
Chen, Shimeng ;
Yuan, Huizhen ;
Zhou, Dapeng ;
Peng, Wei .
ADVANCED OPTICAL MATERIALS, 2019, 7 (19)