On the Alexander biquandles of oriented surface-links via marked graph diagrams

被引:9
|
作者
Kim, Jieon [1 ]
Joung, Yewon [1 ]
Lee, Sang Youl [2 ]
机构
[1] Pusan Natl Univ, Grad Sch Nat Sci, Dept Math, Pusan 609735, South Korea
[2] Pusan Natl Univ, Dept Math, Pusan 609735, South Korea
基金
新加坡国家研究基金会;
关键词
Fundamental biquandle; Alexander biquandle; ch-diagram; marked graph diagram; knotted surface; surface-link; invariant of surface-link; invertible surface-link; INVARIANTS; 4-SPACE;
D O I
10.1142/S0218216514600074
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Carrell defined the fundamental biquandle of an oriented surface-link by a presentation obtained from its broken surface diagram, which is an invariant up to isomorphism of the fundamental biquandle. Ashihara gave a method to calculate the fundamental biquandle of an oriented surface-link from its marked graph diagram (ch-diagram). In this paper, we discuss the fundamental Alexander biquandles of oriented surface-links via marked graph diagrams, derived computable invariants and their applications to detect non-invertible oriented surface-links.
引用
收藏
页数:26
相关论文
共 14 条