Homogeneous sets, clique-separators, critical graphs, and optimal X -binding functions

被引:12
作者
Brause, Christoph [1 ]
Geisser, Maximilian [1 ]
Schiermeyer, Ingo [1 ]
机构
[1] TU Bergakad Freiberg, Inst Discrete Math & Algebra, Freiberg, Germany
关键词
Chi-binding function; Critical graphs; P-5-free graphs; banner-free graphs; co-banner-free graphs; C-4-free graphs; DELTA; OMEGA; CHI; NUMBER;
D O I
10.1016/j.dam.2022.05.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a set H of graphs, let f(H)* : N(>)0 -> N(>)0 be the optimal chi-binding function of the class of H-free graphs, that is, f(H)*(omega) = max{chi(G) : G is H-free, omega(G) = omega}. In this paper, we combine the two decomposition methods by homogeneous sets and clique-separators in order to determine optimal chi-binding functions for subclasses of P-5-free graphs and of (C-5 , C-7, ...)-free graphs. In particular, we prove the following for each omega >= 1: (i) f*({P5,banner})(omega )= f *({3K1})(omega) is an element of Theta(omega(2)/ log(omega)), ii) f*({P5,banner})(omega )= f *({2K2})(omega) is an element of O(omega(2)), iii) f*({C5,C7, ..., banner}) (omega) = f *({c5, 3K1}) (omega) is not an element of O (omega), and. iv) f *({P5,C4}) (omega) = [(5 omega - 1)/4]. We also characterise, for each of our considered graph classes, all graphs G with chi(G) > chi(G - u) for each u is an element of V (G). From these structural results, Reed's conjecture relating chromatic number, clique number, and maximum degree of a graph - follows for (P-5, banner)-free graphs. (C) 2022 Published by Elsevier B.V.
引用
收藏
页码:211 / 222
页数:12
相关论文
共 32 条
[1]   Bounding χ in terms of ω and Δ for some classes of graphs [J].
Aravind, N. R. ;
Karthick, T. ;
Subramanian, C. R. .
DISCRETE MATHEMATICS, 2011, 311 (12) :911-920
[2]  
Berge C., 1961, WISS Z MARTIN LUTHER, V10, P114
[3]   THE INDEPENDENCE RATIO OF REGULAR GRAPHS [J].
BOLLOBAS, B .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 83 (02) :433-436
[4]  
Bondy J.A., 2008, GTM
[5]  
Brause C., 2021, Trends Math., V14, P311
[6]   On the chromatic number of 2K2-free graphs [J].
Brause, Christoph ;
Randerath, Bert ;
Schiermeyer, Ingo ;
Vumar, Elkin .
DISCRETE APPLIED MATHEMATICS, 2019, 253 :14-24
[7]   Perfect coloring and linearly χ-bound P6-Free graphs [J].
Choudum, S. A. ;
Karthick, T. ;
Shalu, M. A. .
JOURNAL OF GRAPH THEORY, 2007, 54 (04) :293-306
[8]   Coloring graphs with no induced five-vertex path or gem [J].
Chudnovsky, Maria ;
Karthick, T. ;
Maceli, Peter ;
Maffray, Frederic .
JOURNAL OF GRAPH THEORY, 2020, 95 (04) :527-542
[9]   Perfect divisibility and 2-divisibility [J].
Chudnovsky, Maria ;
Sivaraman, Vaidy .
JOURNAL OF GRAPH THEORY, 2019, 90 (01) :54-60
[10]   The strong perfect graph theorem [J].
Chudnovsky, Maria ;
Robertson, Neil ;
Seymour, Paul ;
Thomas, Robin .
ANNALS OF MATHEMATICS, 2006, 164 (01) :51-229