ISS-like properties in Lie-bracket approximations and application to extremum seeking

被引:13
作者
Labar, Christophe [1 ,2 ]
Ebenbauer, Christian [2 ]
Marconi, Lorenzo [1 ]
机构
[1] Univ Bologna, CASY DEI, I-40136 Bologna, Italy
[2] Rhein Westfal TH Aachen, Chair Intelligent Control Syst, D-52074 Aachen, Germany
关键词
Lie-bracket approximation; Input-to-state stability; Extremum seeking; Time-varying optimum; Noise; SYSTEMS; STABILITY;
D O I
10.1016/j.automatica.2021.110041
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider a class of nonlinear time-varying systems that are subject to uncontrolled inputs. Those inputs may represent, for instance, disturbances, time-varying parameters, or model uncertainties. Exploiting the stability properties of an extended system, a so-called Lie-bracket system, we derive stability properties of the original system. Those stability results, in the spirit of input to-state stability, are then applied to the case where the dynamical system is an extremum seeking system. Two scenarios are analyzed. We first consider that the uncontrolled input is a deterministic noise corrupting the cost measurement. We then examine the case where the uncontrolled input induces time-variations of the cost optimizer. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:14
相关论文
共 31 条
[1]  
Attouch H., 2011, COMMUN CONTEMP MATH, V02
[2]   Extremum seeking to control the amplitude and frequency of a pulsed jet for bluff body drag reduction [J].
Brackston, Rowan D. ;
Wynn, Andrew ;
Morrison, Jonathan F. .
EXPERIMENTS IN FLUIDS, 2016, 57 (10)
[3]  
Bressan A., 2007, INTRO MATH THEORY CO
[4]   Maximum Power Point Tracking for Photovoltaic Optimization Using Ripple-Based Extremum Seeking Control [J].
Brunton, Steven L. ;
Rowley, Clarence W. ;
Kulkarni, Sanjeev R. ;
Clarkson, Charles .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2010, 25 (10) :2531-2540
[5]   Lie bracket approximation of extremum seeking systems [J].
Duerr, Hans-Bernd ;
Stankovic, Milos S. ;
Ebenbauer, Christian ;
Johansson, Karl Henrik .
AUTOMATICA, 2013, 49 (06) :1538-1552
[6]  
Durr H.B., 2013, IFAC Proceedings Volumes, V46, P540
[7]  
Durr H.-B., 2015, THESIS STUTTGART U
[8]   Power Optimization and Control in Wind Energy Conversion Systems Using Extremum Seeking [J].
Ghaffari, Azad ;
Krstic, Miroslav ;
Seshagiri, Sridhar .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2014, 22 (05) :1684-1695
[9]   On a class of generating vector fields for the extremum seeking problem: Lie bracket approximation and stability properties [J].
Grushkovskaya, Victoria ;
Zuyev, Alexander ;
Ebenbauer, Christian .
AUTOMATICA, 2018, 94 :151-160
[10]   Extremism Seeking for Time-Varying Functions using Lie Bracket Approximations [J].
Grushkovskaya, Victoria ;
Duerr, Hans-Bernd ;
Ebenbauer, Christian ;
Zuyev, Alexander .
IFAC PAPERSONLINE, 2017, 50 (01) :5522-5528