CRITICAL GAUSSIAN MULTIPLICATIVE CHAOS: CONVERGENCE OF THE DERIVATIVE MARTINGALE

被引:78
作者
Duplantier, Bertrand [1 ]
Rhodes, Remi [2 ]
Sheffield, Scott [3 ]
Vargas, Vincent [2 ]
机构
[1] CEA Saclay, Inst Phys Theor, F-91191 Gif Sur Yvette, France
[2] Univ Paris 09, UMR 7564, F-75775 Paris 16, France
[3] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
Gaussian multiplicative chaos; Liouville quantum gravity; maximum of log-correlated fields; BRANCHING RANDOM-WALK; INVARIANT RANDOM MEASURES; CRITICAL-BEHAVIOR; QUANTUM-GRAVITY; FIXED-POINTS; MATRIX MODEL; FIELD-THEORY; SMOOTHING TRANSFORMATION; NONPERTURBATIVE SOLUTION; RANDOM SURFACES;
D O I
10.1214/13-AOP890
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study Gaussian multiplicative chaos in the critical case. We show that the so-called derivative martingale, introduced in the context of branching Brownian motions and branching random walks, converges almost surely (in all dimensions) to a random measure with full support. We also show that the limiting measure has no atom. In connection with the derivative martingale, we write explicit conjectures about the glassy phase of log-correlated Gaussian potentials and the relation with the asymptotic expansion of the maximum of log-correlated Gaussian random variables.
引用
收藏
页码:1769 / 1808
页数:40
相关论文
共 69 条
[1]  
AIDEKON E., ARXIV11020217V2
[2]   CONVERGENCE IN LAW OF THE MINIMUM OF A BRANCHING RANDOM WALK [J].
Aidekon, Elie .
ANNALS OF PROBABILITY, 2013, 41 (3A) :1362-1426
[3]  
Allez R, 2013, PROBAB THEORY REL, V155, P751, DOI 10.1007/s00440-012-0412-9
[4]   A PROPOSAL FOR STRINGS AT D-GREATER-THAN-1 [J].
ALVAREZGAUME, L ;
BARBON, JLF ;
CRNKOVIC, C .
NUCLEAR PHYSICS B, 1993, 394 (02) :383-422
[5]   A SOLVABLE 2D-GRAVITY MODEL WITH GAMMA-GREATER-THAN-0 [J].
AMBJORN, J ;
DURHUUS, B ;
JONSSON, T .
MODERN PHYSICS LETTERS A, 1994, 9 (13) :1221-1228
[6]   POISSON-DIRICHLET STATISTICS FOR THE EXTREMES OF A LOG-CORRELATED GAUSSIAN FIELD [J].
Arguin, Louis-Pierre ;
Zindy, Olivier .
ANNALS OF APPLIED PROBABILITY, 2014, 24 (04) :1446-1481
[7]   Log-infinitely divisible multifractal processes [J].
Bacry, E ;
Muzy, JF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 236 (03) :449-475
[8]  
Barral J, 1999, PROBAB THEORY REL, V113, P535, DOI 10.1007/s004400050217
[9]   Multifractal products of cylindrical pulses [J].
Barral, J ;
Mandelbrot, BB .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 124 (03) :409-430
[10]   Critical Mandelbrot Cascades [J].
Barral, Julien ;
Kupiainen, Antti ;
Nikula, Miika ;
Saksman, Eero ;
Webb, Christian .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 325 (02) :685-711