Wald entropy formula and loop quantum gravity

被引:10
作者
Bodendorfer, N. [1 ,2 ,3 ]
Neiman, Y. [1 ,2 ,4 ]
机构
[1] Inst Gravitat & Cosmos, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[3] Univ Warsaw, Fac Phys, PL-02093 Warsaw, Poland
[4] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
BLACK-HOLE ENTROPY; MASTER CONSTRAINT PROGRAM; SPIN DYNAMICS; VARIABLES; MECHANICS; GEOMETRY; TENSOR;
D O I
10.1103/PhysRevD.90.084054
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We outline how the Wald entropy formula naturally arises in loop quantum gravity based on recently introduced dimension-independent connection variables. The key observation is that in a loop quantization of a generalized gravity theory, the analog of the area operator turns out to measure, morally speaking, the Wald entropy rather than the area. We discuss the explicit example of (higher-dimensional) Lanczos-Lovelock gravity and comment on recent work on finding the correct numerical prefactor of the entropy by comparing it to a semiclassical effective action.
引用
收藏
页数:14
相关论文
共 71 条
[1]  
[Anonymous], 1999, Adv. Theor. Math. Phys, DOI DOI 10.4310/ATMP.1999.V3.N3.A1
[2]  
[Anonymous], 2022, Back to reichenbach, DOI DOI 10.1017/CBO9780511755804
[3]  
Arnowitt R, 2008, GEN RELAT GRAVIT, V40, P1997, DOI 10.1007/s10714-008-0661-1
[4]   NEW VARIABLES FOR CLASSICAL AND QUANTUM-GRAVITY [J].
ASHTEKAR, A .
PHYSICAL REVIEW LETTERS, 1986, 57 (18) :2244-2247
[5]   Non-minimal couplings, quantum geometry and black-hole entropy [J].
Ashtekar, A ;
Corichi, A .
CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (20) :4473-4484
[6]   Non-minimally coupled scalar fields and isolated horizons [J].
Ashtekar, A ;
Corichi, A ;
Sudarsky, D .
CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (15) :3413-3425
[7]   Mechanics of isolated horizons [J].
Ashtekar, A ;
Beetle, C ;
Fairhurst, S .
CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (02) :253-298
[8]   Isolated horizons: Hamiltonian evolution and the first law [J].
Ashtekar, A ;
Fairhurst, S ;
Krishnan, B .
PHYSICAL REVIEW D, 2000, 62 (10)
[9]   Mechanics of higher dimensional black holes in asymptotically anti-de Sitter spacetimes [J].
Ashtekar, Abhay ;
Pawlowski, Tomasz ;
Van den Broeck, Chris .
CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (03) :625-644
[10]  
Ashtekar A, 2000, ADV THEOR MATH PHYS, V4