Wald entropy formula and loop quantum gravity

被引:10
作者
Bodendorfer, N. [1 ,2 ,3 ]
Neiman, Y. [1 ,2 ,4 ]
机构
[1] Inst Gravitat & Cosmos, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[3] Univ Warsaw, Fac Phys, PL-02093 Warsaw, Poland
[4] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
BLACK-HOLE ENTROPY; MASTER CONSTRAINT PROGRAM; SPIN DYNAMICS; VARIABLES; MECHANICS; GEOMETRY; TENSOR;
D O I
10.1103/PhysRevD.90.084054
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We outline how the Wald entropy formula naturally arises in loop quantum gravity based on recently introduced dimension-independent connection variables. The key observation is that in a loop quantization of a generalized gravity theory, the analog of the area operator turns out to measure, morally speaking, the Wald entropy rather than the area. We discuss the explicit example of (higher-dimensional) Lanczos-Lovelock gravity and comment on recent work on finding the correct numerical prefactor of the entropy by comparing it to a semiclassical effective action.
引用
收藏
页数:14
相关论文
共 71 条
  • [1] [Anonymous], 1999, Adv. Theor. Math. Phys, DOI DOI 10.4310/ATMP.1999.V3.N3.A1
  • [2] [Anonymous], 2022, Back to reichenbach, DOI DOI 10.1017/CBO9780511755804
  • [3] Arnowitt R, 2008, GEN RELAT GRAVIT, V40, P1997, DOI 10.1007/s10714-008-0661-1
  • [4] NEW VARIABLES FOR CLASSICAL AND QUANTUM-GRAVITY
    ASHTEKAR, A
    [J]. PHYSICAL REVIEW LETTERS, 1986, 57 (18) : 2244 - 2247
  • [5] Non-minimal couplings, quantum geometry and black-hole entropy
    Ashtekar, A
    Corichi, A
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (20) : 4473 - 4484
  • [6] Non-minimally coupled scalar fields and isolated horizons
    Ashtekar, A
    Corichi, A
    Sudarsky, D
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (15) : 3413 - 3425
  • [7] Mechanics of isolated horizons
    Ashtekar, A
    Beetle, C
    Fairhurst, S
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (02) : 253 - 298
  • [8] Isolated horizons: Hamiltonian evolution and the first law
    Ashtekar, A
    Fairhurst, S
    Krishnan, B
    [J]. PHYSICAL REVIEW D, 2000, 62 (10)
  • [9] Mechanics of higher dimensional black holes in asymptotically anti-de Sitter spacetimes
    Ashtekar, Abhay
    Pawlowski, Tomasz
    Van den Broeck, Chris
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (03) : 625 - 644
  • [10] Ashtekar A, 2000, ADV THEOR MATH PHYS, V4