Network Anomaly Detection Using Federated Deep Autoencoding Gaussian Mixture Model

被引:18
作者
Chen, Yang [1 ]
Zhang, Junzhe [1 ]
Yeo, Chai Kiat [1 ]
机构
[1] Nanyang Technol Univ, Sch Comp Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
来源
MACHINE LEARNING FOR NETWORKING (MLN 2019) | 2020年 / 12081卷
关键词
Anomaly detection; Small dataset; Privacy-preserving; Federated learning; Deep autoencoding Gaussian mixture model; Network security;
D O I
10.1007/978-3-030-45778-5_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep autoencoding Gaussian mixture model (DAGMM) employs dimensionality reduction and density estimation and jointly optimizes them for unsupervised anomaly detection tasks. However, the absence of large amount of training data greatly compromises DAGMM's performance. Due to rising concerns for privacy, a worse situation can be expected. By aggregating only parameters from local training on clients for obtaining knowledge from more private data, federated learning is proposed to enhance model performance. Meanwhile, privacy is properly protected. Inspired by the aforementioned, this paper presents a federated deep autoencoding Gaussian mixture model (FDAGMM) to improve the disappointing performance of DAGMM caused by limited data amount. The superiority of our proposed FDAGMM is empirically demonstrated with extensive experiments.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 19 条
[1]  
[Anonymous], 2013, PROC SIMONS I WORKSH
[2]   Robust Principal Component Analysis? [J].
Candes, Emmanuel J. ;
Li, Xiaodong ;
Ma, Yi ;
Wright, John .
JOURNAL OF THE ACM, 2011, 58 (03)
[3]  
Chalapathy R., 2019, Deep Learning for Anomaly Detection: A Survey, DOI DOI 10.48550/ARXIV.1901.03407
[4]   Communication-Efficient Federated Deep Learning With Layerwise Asynchronous Model Update and Temporally Weighted Aggregation [J].
Chen, Yang ;
Sun, Xiaoyan ;
Jin, Yaochu .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (10) :4229-4238
[5]  
Chen Y, 2019, LECT NOTES COMPUT SC, V11655, P374, DOI 10.1007/978-3-030-26369-0_35
[6]  
Edgeworth F.Y, 1887, The London, Edinburgh, and Dublin philosophical magazine and journal of science, V23, P364, DOI DOI 10.1080/14786448708628471
[7]  
Javaid A, 2016, ACM, P21, DOI DOI 10.4108/EAI.3-12-2015.2262516
[8]  
Konecny J., 2015, NIPS, P1
[9]  
Konecny Jakub, 2016, CORR
[10]   Deep learning [J].
LeCun, Yann ;
Bengio, Yoshua ;
Hinton, Geoffrey .
NATURE, 2015, 521 (7553) :436-444