Low noise laser-based T-ray spectroscopy of liquids using double-modulated differential time-domain spectroscopy

被引:27
作者
Mickan, SP [1 ]
Shvartsman, R
Munch, J
Zhang, XC
Abbott, D
机构
[1] Univ Adelaide, CBME, Adelaide, SA 5005, Australia
[2] Univ Adelaide, Dept Elect & Elect Engn, Adelaide, SA 5005, Australia
[3] Rensselaer Polytech Inst, Ctr Terahertz Res, Troy, NY 12180 USA
[4] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
[5] Univ Adelaide, Dept Phys & Math Phys, Adelaide, SA 5005, Australia
关键词
terahertz time-domain spectroscopy (THz-TDS); T-rays liquid spectroscopy;
D O I
10.1088/1464-4266/6/8/025
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Liquid transmission studies at terahertz frequencies (0.1-10 THz) are valuable for understanding solvation dynamics of salts, exploring long-range structure in mixtures and probing biomolecules in suspension. T-ray (or THz) time-domain spectroscopy, based on terahertz pulse generation from ultrafast lasers, is a sensitive technique for measuring material parameters in this frequency range. This paper proposes and demonstrates a novel technique for increasing the sensitivity and repeatability of liquid studies with T-ray time-domain spectroscopy (TDS), reducing relative parameter measurement errors below 0.0001. The proposed technique combines dual-thickness liquid measurement with rapid modulation (double-modulated differential TDS) to reduce the effect of both thickness-measurement errors and T-ray noise errors below 0.0001. The possible reduction in error is calculated and a liquid differential TDS (DTDS) prototype is demonstrated, incorporating amplitude and mean detection for near-simultaneous measurement of two T-ray waveforms.
引用
收藏
页码:S786 / S795
页数:10
相关论文
共 33 条
[1]   BROAD-BAND MICROWAVE MEASUREMENTS WITH TRANSIENT RADIATION FROM OPTOELECTRONICALLY PULSED ANTENNAS [J].
ARJAVALINGAM, G ;
PASTOL, Y ;
HALBOUT, JM ;
KOPCSAY, GV .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1990, 38 (05) :615-621
[2]   Dielectric relaxation of electrolyte solutions using terahertz transmission spectroscopy [J].
Asaki, MLT ;
Redondo, A ;
Zawodzinski, TA ;
Taylor, AJ .
JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (19) :8469-8482
[3]   Using the finite-difference time-domain pulse propagation method to simulate time-resolved THz experiments [J].
Beard, MC ;
Schmuttenmaer, CA .
JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (07) :2903-2909
[4]  
BEARD MC, 2000, TRENDS OPTICS PHOTON, V43, P592
[5]   Coherent manipulation of semiconductor quantum bits with terahertz radiation [J].
Cole, BE ;
Williams, JB ;
King, BT ;
Sherwin, MS ;
Stanley, CR .
NATURE, 2001, 410 (6824) :60-63
[6]   A reliable method for extraction of material parameters in terahertz time-domain spectroscopy [J].
Duvillaret, L ;
Garet, F ;
Coutaz, JL .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1996, 2 (03) :739-746
[7]   Influence of noise on the characterization of materials by terahertz time-domain spectroscopy [J].
Duvillaret, L ;
Garet, F ;
Coutaz, JL .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2000, 17 (03) :452-461
[8]   Dielectric constant measurement of thin films by differential time-domain spectroscopy [J].
Jiang, ZP ;
Li, M ;
Zhang, XC .
APPLIED PHYSICS LETTERS, 2000, 76 (22) :3221-3223
[9]   Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy [J].
Kindt, JT ;
Schmuttenmaer, CA .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (24) :10373-10379
[10]   THz spectroscopy of polar liquids [J].
Libon, IH ;
Hempel, M ;
Seitz, S ;
Hecker, NE ;
Feldmann, J ;
Hayd, A ;
Zundel, G ;
Mittleman, D ;
Koch, M .
TERAHERTZ SPECTROSCOPY AND APPLICATIONS, 1999, 3617 :24-29