Traffic parameter estimation and highway classification: Rough patterns using a neural networks approach

被引:2
作者
Lingras, P [1 ]
机构
[1] Algoma Univ Coll, Dept Comp Sci, Sault St Marie, ON P6A 2G4, Canada
关键词
traffic; design hourly volume; highway classification; neural networks; rough patterns; traffic parameter estimation;
D O I
10.1080/03081069808717607
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
Neural networks provide more accurate estimations of traffic parameters than conventional methods. This paper explores the possibility of using more sophisticated neural networks based on rough patterns for increasing the accuracy of estimations. A rough pattern is represented by upper and lower bounds of the input values. The paper compares four different data collection schedules and two different types of neural network architectures for estimations of average and peak traffic volumes as well as classification of highways.
引用
收藏
页码:155 / 179
页数:25
相关论文
共 16 条
[1]  
[Anonymous], INT J INFORM COMPUTE
[2]  
[Anonymous], TRANSPORTATION RES R
[3]  
De Garmo E P, 1984, ENG EC
[4]  
GARBER NJ, 1988, TRAFFIC HIGHWAY ENG
[5]  
Hecht-Nielsen R, 1990, NEUROCOMPUTING
[6]  
Lingras P., 1996, PROC 6 INT C INFORM, P1445
[7]  
LINGRAS PJ, 1995, J TRANSPORTATION ENG, V121
[8]  
LINGRAS PJ, 1996, UNPUB J TRANSPORTATI
[9]  
LINGRAS PJ, 1996, IN PRESS J COMPUTING
[10]   ROUGH CLASSIFICATION [J].
PAWLAK, Z .
INTERNATIONAL JOURNAL OF MAN-MACHINE STUDIES, 1984, 20 (05) :469-483