An interval counterexample on topological sequence entropy

被引:1
作者
Cánovas, JS [1 ]
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Murcia 30203, Spain
关键词
Sequence Entropy; Dynamical Meaning; Topological Sequence; Topological Sequence Entropy;
D O I
10.1023/A:1006712829591
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide an example showing that, in general, the topological sequence entropy of a continuous interval map cannot be attained on the set of non-wandering points. This proves that there is no connection between the topological sequence entropy of an interval map and its behavior on sets of special dynamical meaning.
引用
收藏
页码:123 / 131
页数:9
相关论文
共 13 条
[1]  
24Walters P., 2000, An Introduction to Ergodic Theory, V79
[2]   TOPOLOGICAL ENTROPY [J].
ADLER, RL ;
KONHEIM, AG ;
MCANDREW, MH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (02) :309-&
[3]   Commutativity and non-commutativity of topological sequence entropy [J].
Balibrea, F ;
Peña, JSC ;
López, VJ .
ANNALES DE L INSTITUT FOURIER, 1999, 49 (05) :1693-+
[4]   Some results on entropy and sequence entropy [J].
Balibrea, F ;
López, VJ ;
Peña, JSC .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (09) :1731-1742
[5]  
DEKKING FM, 1980, T AM MATH SOC, V259, P167
[6]   POSITIVE SEQUENCE TOPOLOGICAL-ENTROPY CHARACTERIZES CHAOTIC MAPS [J].
FRANZOVA, N ;
SMITAL, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (04) :1083-1086
[7]  
GOODMAN TNT, 1974, P LOND MATH SOC, V29, P331
[8]  
HRIC R, 1998, TOPOLOGICAL SEQUENCE
[9]  
JimUnez Lpez V., 1995, REAL ANAL EXCH, V21, P1
[10]   THE SEQUENCE ENTROPY FOR MORSE SHIFTS AND SOME COUNTEREXAMPLES [J].
LEMANCZYK, M .
STUDIA MATHEMATICA, 1985, 82 (03) :221-241