Stability and weak rotation limit of solitary waves of the Ostrovsky equation

被引:0
作者
Levandosky, Steve [1 ]
Liu, Yue
机构
[1] Coll Holy Cross, Dept Math & Comp Sci, Worcester, MA 01610 USA
[2] Univ Texas, Dept Math, Arlington, TX 76019 USA
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2007年 / 7卷 / 04期
关键词
KdV-Iike equations; solitary waves; stability; variational principles;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study several aspects of solitary wave solutions of the Ostrovsky equation. Using variational methods, we show that as the rotation parameter goes to zero, ground state solitary waves of the Ostrovsky equation converge to solitary waves of the Korteweg-deVries equation. We also investigate the properties of the function d(c) which determines the stability of the ground states. Using an important scaling identity, together with numerical approximations of the solitary waves, we are able to numerically approximate d(c). These calculations suggest that d is convex everywhere, and therefore all ground state solitary waves of the Ostrovsky equation are stable.
引用
收藏
页码:793 / 806
页数:14
相关论文
共 16 条
[1]  
AMICK CJ, 1992, Z ANGEW MATH PHYS, V43
[2]  
BENILOV ES, 1992, STUD APPL MATH, V87, P1
[3]   ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS [J].
CAZENAVE, T ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) :549-561
[4]  
GALKIN VN, 1991, PMM-J APPL MATH MEC+, V55, P939, DOI 10.1016/0021-8928(91)90148-N
[5]  
GILMAN OA, 1995, STUD APPL MATH, V95, P115
[7]  
LIONS PL, 1984, ANN I H POINCARE-AN, V1, P223
[8]  
LIONS PL, 1984, ANN I H POINCARE-AN, V1, P109
[9]   Stability of solitary waves and weak rotation limit for the Ostrovsky equation [J].
Liu, Y ;
Varlamov, V .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 203 (01) :159-183
[10]  
LIU Y, 2004, STABILITY SOLITARY W