High Yield Synthesis of Aspect Ratio Controlled Graphenic Materials from Anthracite Coal in Supercritical Fluids

被引:86
作者
Sasikala, Suchithra Padmajan [1 ]
Henry, Lucile [1 ]
Tonga, Gulen Yesilbag [2 ]
Huang, Kai [3 ]
Das, Riddha [2 ]
Giroire, Baptiste [1 ]
Marre, Samuel [1 ]
Rotello, Vincent M. [2 ]
Penicaud, Alain [3 ]
Poulin, Philippe [3 ]
Aymonier, Cyril [1 ]
机构
[1] Univ Bordeaux, CNRS, ICMCB, UPR 9048, F-33600 Pessac, France
[2] Univ Massachusetts, Dept Chem, Amherst, MA 01003 USA
[3] Univ Bordeaux, CNRS, Ctr Rech Paul Pascal, F-33600 Pessac, France
基金
美国国家卫生研究院;
关键词
emissive graphene oxide quantum dots; conductive graphenic ribbons; coal; supercritical fluids; bioimaging; QUANTUM DOTS; SOLVOTHERMAL SYNTHESIS; CARBON NANOTUBES; QUALITY GRAPHENE; FACILE SYNTHESIS; OXIDE; CONVERSION; PHOTOLUMINESCENCE; NANORIBBONS; GRAPHITE;
D O I
10.1021/acsnano.6b01298
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper rationalizes the green and scalable synthesis of graphenic materials of different aspect ratios using anthracite coal as a single source material under different supercritical environments. Single layer, monodisperse graphene oxide quantum dots (GQDs) are obtained at high yield (55 wt %) from anthracite coal in supercritical water. The obtained GQDs are similar to 3 nm in lateral size and display a high fluorescence quantum yield of 28%. They show high cell viability and are readily used for imaging cancer cells. In an analogous experiment, high aspect ratio graphenic materials with ribbon-like morphology (GRs) are synthesized from the same source material in supercritical ethanol at a yield of 6.4 wt %. A thin film of GRs with 68% transparency shows a surface resistance of 9.3 k Omega/sq. This is apparently the demonstration of anthracite coal as a source for electrically conductive graphenic materials.
引用
收藏
页码:5293 / 5303
页数:11
相关论文
共 64 条
[1]   Synthesis of graphene ribbons using selective chemical vapor deposition [J].
An, Hyosub ;
Lee, Wan-Gyu ;
Jung, Jongwan .
CURRENT APPLIED PHYSICS, 2012, 12 (04) :1113-1117
[2]   Luminescent Carbon Nanodots: Emergent Nanolights [J].
Baker, Sheila N. ;
Baker, Gary A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (38) :6726-6744
[3]   Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J].
Becerril, Hdctor A. ;
Mao, Jie ;
Liu, Zunfeng ;
Stoltenberg, Randall M. ;
Bao, Zhenan ;
Chen, Yongsheng .
ACS NANO, 2008, 2 (03) :463-470
[4]   All in the graphene family - A recommended nomenclature for two-dimensional carbon materials [J].
Bianco, Alberto ;
Cheng, Hui-Ming ;
Enoki, Toshiaki ;
Gogotsi, Yury ;
Hurt, Robert H. ;
Koratkar, Nikhil ;
Kyotani, Takashi ;
Monthioux, Marc ;
Park, Chong Rae ;
Tascon, Juan M. D. ;
Zhang, Jin .
CARBON, 2013, 65 :1-6
[5]  
Bröll D, 1999, ANGEW CHEM INT EDIT, V38, P2999
[6]  
Brooks J, 1965, Carbon, V3, P185, DOI DOI 10.1016/0008-6223(65)90047-3
[7]   Near and supercritical water. Part II: Oxidative processes [J].
Brunner, G. .
JOURNAL OF SUPERCRITICAL FLUIDS, 2009, 47 (03) :382-390
[8]   Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes [J].
Brunner, G. .
JOURNAL OF SUPERCRITICAL FLUIDS, 2009, 47 (03) :373-381
[9]   Continuous synthesis of high quality CdSe quantum dots in supercritical fluids [J].
Chakrabarty, Arkajyoti ;
Marre, Samuel ;
Landis, Ryan F. ;
Rotello, Vincent M. ;
Maitra, Uday ;
Del Guerzo, Andre ;
Aymonier, Cyril .
JOURNAL OF MATERIALS CHEMISTRY C, 2015, 3 (29) :7561-7566
[10]   Gram-scale production of graphene based on solvothermal synthesis and sonication [J].
Choucair, Mohammad ;
Thordarson, Pall ;
Stride, John A. .
NATURE NANOTECHNOLOGY, 2009, 4 (01) :30-33