On weak-injective modules over integral domains

被引:8
作者
Fuchs, Laszlo [2 ]
Lee, Sang Bum [1 ]
机构
[1] Sangmyung Univ, Dept Math, Seoul 110743, South Korea
[2] Tulane Univ, Dept Math, New Orleans, LA 70118 USA
关键词
Torsion-free; Flat; Pure-injective and weak-injective modules; Enochs-cotorsion modules; Flat cover; Weak-injective envelope; Almost perfect domain; Weak dimension;
D O I
10.1016/j.jalgebra.2010.02.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a weak-injective module over an integral domain need not be pure-injective (Theorem 2.3). Equivalently, a torsion-free Enochs-cotorsion module over an integral domain is not necessarily pure-injective (Corollary 2.4). This solves a well-known open problem in the negative. In addition, we establish a close relation between flat covers and weak-injective envelopes of a module (Theorem 3.1). This yields a method of constructing weak-injective envelopes from flat covers (and vice versa). Similar relation exists between the Enochs-cotorsion envelopes and the weak dimension <= 1 covers of modules (Theorem 3.2). (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1872 / 1878
页数:7
相关论文
共 12 条
[1]  
Bazzoni S., 2003, Colloq. Math, V95, P285, DOI [10.4064/cm95-2-11, DOI 10.4064/CM95-2-11]
[2]   Cotorsion pairs generated by modules of bounded projective dimension [J].
Bazzoni, Silvana ;
Herbera, Dolors .
ISRAEL JOURNAL OF MATHEMATICS, 2009, 174 (01) :119-160
[3]   All modules have flat covers [J].
Bican, L ;
El Bashir, R ;
Enochs, E .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 :385-390
[4]  
Enochs E.E., 2000, GRUYTER EXP MATH, V30
[5]  
FUCHS L, 2001, MATH SURVEYS MONOGR, V84
[6]   Weak-injectivity and almost perfect domains [J].
Fuchs, Laszlo ;
Lee, Sang Bum .
JOURNAL OF ALGEBRA, 2009, 321 (01) :18-27
[7]  
GOBEL R, 2006, EXP MATH, V41
[8]   A note on the Matlis category equivalence [J].
Lee, SB .
JOURNAL OF ALGEBRA, 2006, 299 (02) :854-862
[9]   Weak-injective modules [J].
Lee, SB .
COMMUNICATIONS IN ALGEBRA, 2006, 34 (01) :361-370
[10]   h-divisible modules [J].
Lee, SB .
COMMUNICATIONS IN ALGEBRA, 2003, 31 (01) :513-525