Physical Layer Key Generation in 5G Wireless Networks

被引:77
作者
Jiao, Long [1 ]
Wang, Ning [2 ]
Wang, Pu [5 ]
Alipour-Fanid, Amir [2 ]
Tang, Jie [1 ]
Zeng, Kai [3 ,4 ]
机构
[1] George Mason Univ, Fairfax, VA 22030 USA
[2] George Mason Univ, Elect & Comp Engn Dept, Fairfax, VA 22030 USA
[3] George Mason Univ, Dept Elect & Comp Engn Cyber Secur Engn, Fairfax, VA 22030 USA
[4] George Mason Univ, Dept Comp Sci, Fairfax, VA 22030 USA
[5] Xidian Univ, Cyber Engn, Xian, Shaanxi, Peoples R China
基金
美国国家科学基金会;
关键词
Antenna arrays; Physical layer security; 5G mobile communication; Signal to noise ratio; Precoding; Wireless networks; MIMO;
D O I
10.1109/MWC.001.1900061
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The bloom of 5G communication and beyond serves as a catalyst for physical layer key generation techniques. In 5G communications systems, many challenges in traditional physical layer key generation schemes, such as co-located eavesdroppers, the high bit disagreement ratio, and high temporal correlation, could be overcome. This article lists the key enabling techniques in 5G wireless networks, which offer opportunities to address existing issues in physical layer key generation. We survey the existing key generation methods and introduce possible solutions for the existing issues. The new solutions include applying the high signal directionality in beamforming to resist co-located eavesdroppers, utilizing the sparsity of millimeter-wave channel to achieve a low bit disagreement ratio under low signal-to-noise ratio, and exploiting hybrid precoding to reduce the temporal correlation among measured samples. Finally, the future trends of physical layer key generation in 5G and beyond communications are discussed.
引用
收藏
页码:48 / 54
页数:7
相关论文
共 14 条
[1]   Channel Estimation and Hybrid Precoding for Millimeter Wave Cellular Systems [J].
Alkhateeb, Ahmed ;
El Ayach, Omar ;
Leus, Geert ;
Heath, Robert W., Jr. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2014, 8 (05) :831-846
[2]  
Jiao L, 2018, IEEE INT CONF SENS, P406
[3]   Delay Analysis of Physical-Layer Key Generation in Dynamic Roadside-to-Vehicle Networks [J].
Jin, Rong ;
Du, Xianru ;
Zeng, Kai ;
Huang, Liqun ;
Xiao, Laiyuan ;
Xu, Jing .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2017, 66 (03) :2526-2535
[4]  
MAURER UM, 1993, IEEE T INFORM THEORY, V39, P733, DOI 10.1109/18.256484
[5]   Broadband Millimeter-Wave Propagation Measurements and Models Using Adaptive-Beam Antennas for Outdoor Urban Cellular Communications [J].
Rappaport, Theodore S. ;
Gutierrez, Felix, Jr. ;
Ben-Dor, Eshar ;
Murdock, James N. ;
Qiao, Yijun ;
Tamir, Jonathan I. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2013, 61 (04) :1850-1859
[6]   MIMO for Millimeter-Wave Wireless Communications: Beamforming, Spatial Multiplexing, or Both? [J].
Sun, Shu ;
Rappaport, Theodore S. ;
Heath, Robert W., Jr. ;
Nix, Andrew ;
Rangan, Sundeep .
IEEE COMMUNICATIONS MAGAZINE, 2014, 52 (12) :110-121
[7]   Automatic Secret Keys From Reciprocal MIMO Wireless Channels: Measurement and Analysis [J].
Wallace, Jon W. ;
Sharma, Rajesh K. .
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2010, 5 (03) :381-392
[8]   Adaptive Wireless Channel Probing for Shared Key Generation Based on PID Controller [J].
Wei, Yunchuan ;
Zeng, Kai ;
Mohapatra, Prasant .
IEEE TRANSACTIONS ON MOBILE COMPUTING, 2013, 12 (09) :1842-1852
[9]  
Wu Y, 2021, IEEE T SYST MAN CY-S, V51, P326, DOI [10.1109/TSMC.2018.2871100, 10.1109/TMC.2018.2812722]
[10]   Safeguarding 5G Wireless Communication Networks Using Physical Layer Security [J].
Yang, Nan ;
Wang, Lifeng ;
Geraci, Giovanni ;
Elkashlan, Maged ;
Yuan, Jinhong ;
Di Renzo, Marco .
IEEE COMMUNICATIONS MAGAZINE, 2015, 53 (04) :20-27