The areas log-Minkowski inequality

被引:2
作者
Zhao, Chang-Jian [1 ]
机构
[1] China Jiliang Univ, Dept Math, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
Surface area; Mixed surface area; L-p-mixed surface areas; Orlicz mixed surface area; Log-Minkowski inequality; Orlicz Minkowski inequality for mixed surface areas; FIREY THEORY; AFFINE;
D O I
10.1007/s13398-021-01065-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first propose and establish an Orlicz log-Minkowski inequality for affine surface areas by introducing new concepts of affine surface area measures and using the newly established Orlicz Minkowski inequality for mixed affine surface areas. The new Orlicz log-Minkowski inequality in special cases yields the classical Minkowski inequality for mixed affine surface areas, areas log-Minkowki inequality L-p log-Minkowski inequality for affine surface areas and other log-Minkowski type inequalities for affine surface areas.
引用
收藏
页数:10
相关论文
共 27 条
[1]   The log-Brunn-Minkowski inequality [J].
Boeroeczky, Karoly J. ;
Lutwak, Erwin ;
Yang, Deane ;
Zhang, Gaoyong .
ADVANCES IN MATHEMATICS, 2012, 231 (3-4) :1974-1997
[2]  
Bonnesen T., 1934, Theorie der konvexen Krpern, DOI [10.1007/978-3-642-47404-0, DOI 10.1007/978-3-642-47404-0]
[3]  
Burago YD., 1988, Grundlehren der Mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences, V285, P331
[4]  
Chang-Jian Zhao, 2019, Balkan Journal of Geometry and Its Applications, V24, P100
[5]  
Chang-Jian Zhao, 2017, Balkan Journal of Geometry and Its Applications, V22, P98
[6]   A logarithmic Gauss curvature flow and the Minkowski problem [J].
Chou, KS ;
Wang, XJ .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (06) :733-751
[7]   The Brunn-Minkowski inequality for the n-dimensional logarithmic capacity of convex bodies [J].
Colesanti, A ;
Cuoghi, P .
POTENTIAL ANALYSIS, 2005, 22 (03) :289-304
[8]   Free Stein kernels and an improvement of the free logarithmic Sobolev inequality [J].
Fathi, Max ;
Nelson, Brent .
ADVANCES IN MATHEMATICS, 2017, 317 :193-223
[9]   Projection problems for symmetric polytopes [J].
He Binwu ;
Leng Gangsong ;
Li Kanghai .
ADVANCES IN MATHEMATICS, 2006, 207 (01) :73-90
[10]   On the log-Minkowski inequality for simplices and parallelepipeds [J].
Henk, M. ;
Pollehn, H. .
ACTA MATHEMATICA HUNGARICA, 2018, 155 (01) :141-157