Fatigue crack propagation of aeronautic AA7050-T7451 and AA2050-T84 aluminum alloys in air and saline environments

被引:27
作者
Cavalcante, T. R. F. [1 ]
Pereira, G. S. [1 ]
Koga, G. Y. [2 ]
Bolfarini, C. [2 ]
Filho, W. W. Bose [1 ]
Avila, J. A. [3 ]
机构
[1] Univ Sao Paulo, Ave Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP, Brazil
[2] Univ Fed Sao Carlos, Dept Mat Sci & Engn, Rod Washington Luis, BR-13565905 Sao Carlos, SP, Brazil
[3] UNESP Sao Paulo State Univ, Campus Sao Joao da Boa Vista, Sao Joao Da Boa Vista, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
AA2050; alloy; AA7050; Fatigue; Corrosion fatigue; Aeronautical materials; LI-CU ALLOY; CORROSION PROTECTION; FRACTURE-BEHAVIOR; GROWTH-BEHAVIOR; AL; MICROSTRUCTURE; MECHANISMS; KINETICS;
D O I
10.1016/j.ijfatigue.2021.106519
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
AA7050-T7451 aluminum alloy is one of the most used material in aeronautical applications due to its high strength/density ratio and good fatigue resistance. More recently the AA2050-T84 alloy was introduced due to its reduced density and comparable static mechanical properties. However, fatigue crack propagation properties in corrosive environments are yet to be documented. In this paper fatigue crack propagation was evaluated in saline (3.5 wt% NaCl solution) and air environments. The AA2050-T84 alloy presented a better fatigue performance both in air and aqueous saline environments. Its superior performance was ascribed to non-homogeneous deformation and higher corrosion resistance. These results show the AA2050-T84 alloy as a potential candi-date to replace AA7050-T7451 alloy in aeronautical components subjected to fatigue in corrosive environments.
引用
收藏
页数:13
相关论文
共 50 条
[1]   Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: A review [J].
Abd El-Aty, Ali ;
Xu, Yong ;
Guo, Xunzhong ;
Zhang, Shi-Hong ;
Ma, Yan ;
Chen, Dayong .
JOURNAL OF ADVANCED RESEARCH, 2018, 10 :49-67
[2]  
[Anonymous], 2015, ASTM E647
[3]  
[Anonymous], 2016, E8E8M16AE1 ASTM INT E8E8M16AE1 ASTM INT
[4]  
[Anonymous], 1996, FATIGUE FRACTURE
[5]   Fatigue crack growth in the 2050-T8 aluminium alloy [J].
Antunes, F. V. ;
Serrano, S. ;
Branco, R. ;
Prates, P. .
INTERNATIONAL JOURNAL OF FATIGUE, 2018, 115 :79-88
[6]   Chemical and electrochemical conditions within stress corrosion and corrosion fatigue cracks [J].
Bland, Leslie G. ;
Locke, Jenifer S. .
NPJ MATERIALS DEGRADATION, 2017, 1 (01)
[7]  
Carla Isabel dos Santos M, 2020, STRENGTH MATER+, P119
[8]   Effects of precipitates on fatigue crack growth rate of AA 7055 aluminum alloy [J].
Chen Jun-zhou ;
Zhen Liang ;
Yang Shou-jie ;
Dai Sheng-long .
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2010, 20 (12) :2209-2214
[9]   Crack tip chemistry and electrochemistry of environmental cracks in AA 7050 [J].
Cooper, Kevin R. ;
Kelly, R. G. .
CORROSION SCIENCE, 2007, 49 (06) :2636-2662
[10]   The effect of inhomogeneous plastic deformation on the ductility and fracture behavior of age hardenable aluminum alloys [J].
Csontos, AA ;
Starke, EA .
INTERNATIONAL JOURNAL OF PLASTICITY, 2005, 21 (06) :1097-1118