Invariant algebraic surfaces of the Rikitake system

被引:44
|
作者
Llibre, J [1 ]
Zhang, X
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
[2] Nanjing Normal Univ, Dept Math, Nanjing 210097, Peoples R China
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2000年 / 33卷 / 42期
关键词
D O I
10.1088/0305-4470/33/42/310
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we use the method of characteristic curves for solving linear partial differential equations to study the invariant algebraic surfaces of the Rikitake system (x) over dot = -mux + y(z + beta) (y) over dot = -muy + (z - beta) (z) over dot = alpha - xy. Our main results are the following. First, we show that the cofactor of any invariant algebraic surface is of the form rz + c, where r is an integer. Second, we characterize all invariant algebraic surfaces, Moreover, as a corollary we characterize ail values of the parameters for which the Rikitake system has a rational or algebraic first integral.
引用
收藏
页码:7613 / 7635
页数:23
相关论文
共 50 条
  • [1] Darboux integrability and algebraic invariant surfaces for the Rikitake system
    Llibre, Jaume
    Valls, Claudia
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (03)
  • [2] Invariant algebraic surfaces of the Lorenz system
    Llibre, J
    Zhang, X
    JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (03) : 1622 - 1645
  • [3] INVARIANT ALGEBRAIC SURFACES OF THE CHEN SYSTEM
    Deng, Xijun
    Chen, Aiyong
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (06): : 1645 - 1651
  • [4] Invariant algebraic surfaces of the Rabinovich system
    Xie, F
    Zhang, X
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (02): : 499 - 516
  • [5] The invariant algebraic surfaces of the Lorenz system
    Swinnerton-Dyer, P
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2002, 132 : 385 - 393
  • [6] Invariant algebraic surfaces of the generalized Lorenz system
    Deng, Xijun
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (05): : 1443 - 1449
  • [7] Invariant algebraic surfaces of the generalized Lorenz system
    Xijun Deng
    Zeitschrift für angewandte Mathematik und Physik, 2013, 64 : 1443 - 1449
  • [8] GLOBAL DYNAMICS OF THE LORENZ SYSTEM WITH INVARIANT ALGEBRAIC SURFACES
    Llibre, Jaume
    Messias, Marcelo
    Da Silva, Paulo Ricardo
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (10): : 3137 - 3155
  • [9] Invariant algebraic surfaces of the FitzHugh-Nagumo system
    Zhang, Liwei
    Yu, Jiang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 483 (02)
  • [10] Comments on “Invariant algebraic surfaces of the generalized Lorenz system”
    Antonio Algaba
    Fernando Fernández-Sánchez
    Manuel Merino
    Alejandro J. Rodríguez-Luis
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 1295 - 1297