Prevacuolar compartment morphology in vps mutants of Saccharomyces cerevisiae

被引:7
作者
Hedman, Jamie M.
Eggleston, Matthew D.
Attryde, Amanda L.
Marshall, Pamela A.
机构
[1] Arizona State Univ, Dept Integrated Nat Sci, Phoenix, AZ 85069 USA
[2] SUNY Coll Fredonia, Dept Biol, Fredonia, NY USA
关键词
Saccharomyces cerevisiae; yeast; prevacuolar compartment; late endosome; morphology; vps mutants;
D O I
10.1016/j.cellbi.2007.04.008
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Over 60 genes have been identified that affect protein sorting to the lysosome-like vacuole in Saccharomyces cerevisiae. Cells with mutations in these vacuolar protein sorting (vps) genes fall into seven general classes based upon their vacuolar morpholology. Class A mutants have a morphologically wild type vacuole, while Class B mutants have a fragmented vacuole. There is no discernable vacuolar structure in Class C mutants. Class D mutants have a slightly enlarged vacuole, but Class E mutants have a normal looking vacuole with an enlarged prevacuolar compartment (PVC), which is analogous to the mammalian late endosome. Class F mutants have a wild type appearing vacuole as well as fragmented vacuolar structures. vps mutants have also been found with a tubulo-vesicular vacuole structure. yps mutant morphology is pertinent, as mutants of the same class may work together and/or have a block in the same general step in the vacuolar protein sorting pathway. We probed PVC morphology and location microscopically in live cells of several null vps mutants using a GFP fusion protein of Nhx1p, an Na+/H+ exchanger normally localized to the PVC. We show that cell strains deleted for VPS proteins that have been previously shown to work together, regardless of VPS Class, have the same PVC morphology. Cell strains lacking VPS genes that have not been implicated in the same pathway show different PVC morphologies, even if the mutant strains are in the same VPS Class. These new studies indicate that PVC morphology is another tier of classification that may more accurately identify proteins that function together in vacuolar protein sorting than the original vps mutation classes. (c) 2007 International Federation for Cell Biology. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1237 / 1244
页数:8
相关论文
共 35 条
[1]   Mutants defective in secretory/vacuolar pathways in the EUROFAN collection of yeast disruptants [J].
Avaro, S ;
Belgareh-Touzé, N ;
Sibella-Argüelles, C ;
Volland, C ;
Haguenauer-Tsapis, R .
YEAST, 2002, 19 (04) :351-371
[2]   ISOLATION OF YEAST MUTANTS DEFECTIVE IN PROTEIN TARGETING TO THE VACUOLE [J].
BANKAITIS, VA ;
JOHNSON, LM ;
EMR, SD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (23) :9075-9079
[3]   ORGANELLE ASSEMBLY IN YEAST - CHARACTERIZATION OF YEAST MUTANTS DEFECTIVE IN VACUOLAR BIOGENESIS AND PROTEIN SORTING [J].
BANTA, LM ;
ROBINSON, JS ;
KLIONSKY, DJ ;
EMR, SD .
JOURNAL OF CELL BIOLOGY, 1988, 107 (04) :1369-1383
[4]   Yeast Vps55p, a functional homolog of human obesity receptor gene-related protein, is involved in late endosome to vacuole trafficking [J].
Belgareh-Touzé, N ;
Avaro, S ;
Rouillé, Y ;
Hoflack, B ;
Haguenauer-Tsapis, R .
MOLECULAR BIOLOGY OF THE CELL, 2002, 13 (05) :1694-1708
[5]   Genomic screen for vacuolar protein sorting genes in Saccharomyces cerevisiae [J].
Bonangelino, CJ ;
Chavez, EM ;
Bonifacino, JS .
MOLECULAR BIOLOGY OF THE CELL, 2002, 13 (07) :2486-2501
[6]   Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae [J].
Bowers, K ;
Stevens, TH .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2005, 1744 (03) :438-454
[7]   The sodium/proton exchanger Nhx1p is required for endosomal protein trafficking in the yeast Saccharomyces cerevisiae [J].
Bowers, K ;
Levi, BP ;
Patel, FI ;
Stevens, TH .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (12) :4277-4294
[8]   The yeast endosomal Na+(K+)/H+ exchanger Nhx1 regulates cellular pH to control vesicle trafficking [J].
Brett, CL ;
Tukaye, DN ;
Mukherjee, S ;
Rao, RJ .
MOLECULAR BIOLOGY OF THE CELL, 2005, 16 (03) :1396-1405
[9]   Vacuole biogenesis in Saccharomyces cerevisiae:: Protein transport pathways to the yeast vacuole [J].
Bryant, NJ ;
Stevens, TH .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1998, 62 (01) :230-+
[10]   Retromer function in endosome-to-Golgi retrograde transport is regulated by the yeast Vps34 PtdIns 3-kinase [J].
Burda, P ;
Padilla, SM ;
Sarkar, S ;
Emr, SD .
JOURNAL OF CELL SCIENCE, 2002, 115 (20) :3889-3900