Further improvements on asymptotic bounds for codes using distinguished divisors

被引:6
作者
Niederreiter, Harald
Ozbudak, Ferruh
机构
[1] Natl Univ Singapore, Dept Math, Singapore 117543, Singapore
[2] Middle E Tech Univ, Dept Math, TR-06531 Ankara, Turkey
关键词
asymptotic theory of codes; Gilbert-Varshamov bound; nonlinear code; Tsfasman-Vladut-Zink bound;
D O I
10.1016/j.ffa.2005.11.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a prime power q, let alpha(q) be the standard function in the asymptotic theory of codes, that is, alpha(q)(delta) (6) is the largest asymptotic information rate that can be achieved for a given asymptotic relative minimum distance 6 of q-ary codes. In recent years the Tsfasman-VlAduj-Zink lower bound on alpha(q) (delta) was improved by Elkies, Xing, and Niederreiter and Ozbudak. In this paper we show further improvements on these bounds by using distinguished divisors of global function fields. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:423 / 443
页数:21
相关论文
共 12 条
  • [1] Berlekamp E. R., 2015, Algebraic Coding Theory
  • [2] BEZERRA J, IN PRESS J REINE ANG
  • [3] Elkies N. D., 2001, PROC 33 ANN ACM S TH, P200
  • [4] Niederreiter H, 2004, PROG COM SC, V23, P259
  • [5] NIEDERREITER H, 2001, RAT POINTS CURVES FI
  • [6] Stichtenoth H., 1993, Algebraic function fields and codes
  • [7] STICHTENOTH H, IN PRESS IEEE T INFO
  • [8] Tsfasman M. A., 1991, ALGEBRAIC GEOMETRIC
  • [9] MODULAR-CURVES, SHIMURA CURVES, AND GOPPA CODES, BETTER THAN VARSHAMOV-GILBERT BOUND
    TSFASMAN, MA
    VLADUT, SG
    ZINK, T
    [J]. MATHEMATISCHE NACHRICHTEN, 1982, 109 : 21 - 28
  • [10] Vladut S. G., 1987, Problems of Information Transmission, V23, P22