Generalized estimating equations for longitudinal mixed Rasch model

被引:6
|
作者
Feddag, ML
Mesbah, M
机构
[1] Univ S Brittany, Lab SABRES, F-56000 Vannes, France
[2] Univ S Brittany, UFR SSI, F-56000 Vannes, France
关键词
IRT models; Rasch model; generalized linear mixed model; fixed effects; random effects; generalized estimating equations; longitudinal data; Fisher-scoring algorithm; quality of life;
D O I
10.1016/j.jspi.2004.06.045
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, the problem of estimating the fixed effects parameters and the variance of the random effects (variance components) in longitudinal mixed Rasch model is considered. It is well known that estimating these parameters by the method of maximum likelihood faces computational difficulties. As an alternative, we propose the generalized estimating equations approach. Approximations of the joint moments of the variables are proposed. The estimators obtained are consistent and asymptotically normal. We illustrate the usefulness of the method with simulations and with an analysis of real data from quality of life. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:159 / 179
页数:21
相关论文
共 50 条
  • [31] A GENERALIZED RASCH MODEL FOR MANIFEST PREDICTORS
    ZWINDERMAN, AH
    PSYCHOMETRIKA, 1991, 56 (04) : 589 - 600
  • [32] Bias from the use of generalized estimating equations to analyze incomplete longitudinal binary data
    Copas, Andrew J.
    Seaman, Shaun R.
    JOURNAL OF APPLIED STATISTICS, 2010, 37 (06) : 911 - 922
  • [33] Improving the correlation structure selection approach for generalized estimating equations and balanced longitudinal data
    Westgate, Philip M.
    STATISTICS IN MEDICINE, 2014, 33 (13) : 2222 - 2237
  • [34] Blinded Sample Size Recalculation in Longitudinal Clinical Trials Using Generalized Estimating Equations
    Daniel Wachtlin
    Meinhard Kieser
    Therapeutic Innovation & Regulatory Science, 2013, 47 : 460 - 467
  • [35] Blinded Sample Size Recalculation in Longitudinal Clinical Trials Using Generalized Estimating Equations
    Wachtlin, Daniel
    Kieser, Meinhard
    THERAPEUTIC INNOVATION & REGULATORY SCIENCE, 2013, 47 (04) : 460 - 467
  • [36] Generalized estimating equations with stabilized working correlation structure
    Kwon, Yongchan
    Choi, Young-Geun
    Park, Taesung
    Ziegler, Andreas
    Paik, Myunghee Cho
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 106 : 1 - 11
  • [37] Optimal model averaging estimation for correlation structure in generalized estimating equations
    Fang, Fang
    Li, Jialiang
    Wang, Jingli
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (05) : 1574 - 1593
  • [38] A FINITE MIXTURE MODEL FOR WORKING CORRELATION MATRICES IN GENERALIZED ESTIMATING EQUATIONS
    Xu, Lili
    Lin, Nan
    Zhang, Baoxue
    Shi, Ning-Zhong
    STATISTICA SINICA, 2012, 22 (02) : 755 - 776
  • [39] Variable selection for correlated bivariate mixed outcomes using penalized generalized estimating equations
    Deshpande, Ved
    Dey, Dipak K.
    Schipano, Elizabeth D.
    STATISTICS AND ITS INTERFACE, 2019, 12 (02) : 265 - 274
  • [40] A PRACTICAL EXTENSION OF THE GENERALIZED ESTIMATING EQUATION APPROACH FOR LONGITUDINAL DATA
    PARK, T
    SHIN, MW
    KYUNGKIDO, YG
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1995, 24 (10) : 2561 - 2579