Hardy inequalities and some critical elliptic and parabolic problems

被引:38
作者
Azorero, JPG [1 ]
Alonso, IP [1 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the behaviour of the nonlinear critical p-heat equation (and the related stationary p-laplacian equation) [GRAPHICS] where -Delta(p)u = -div(\del u\(p-2)del u), f(x)greater than or equal to 0 verifying convenient regularity assumptions, Omega is a bounded domain in R-N such that 0 is an element of Omega, and 1<p<N. The analysis reveals that the behaviour depends on p. The results depend in general on the relation between it and the best constant in Hardy's inequality. (C) 1998 Academic Press.
引用
收藏
页码:441 / 476
页数:36
相关论文
共 30 条
  • [1] AGUILAR JA, 1997, SOME NONLINEAR PARAB
  • [2] Multiplicity results for some nonlinear elliptic equations
    Ambrosetti, A
    Azorero, JG
    Peral, I
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 137 (01) : 219 - 242
  • [3] Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
  • [4] [Anonymous], 1968, PROC SYMPOS PURE MAT
  • [5] [Anonymous], 1921, FONDAMENTI CALCOLO V
  • [6] ARIOLI G, 1996, 14 STOCKH U DEP MATH
  • [7] MULTIPLICITY OF SOLUTIONS FOR ELLIPTIC PROBLEMS WITH CRITICAL EXPONENT OR WITH A NONSYMMETRIC TERM
    AZORERO, JG
    ALONSO, IP
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (02) : 877 - 895
  • [8] BARAS P, 1984, T AM MATH SOC, V294, P121
  • [9] Benilan P., 1995, ANN SCUOLA NORM-SCI, V22, P241
  • [10] BERESTYCKI H, 1975, PUBLICATIONS U 6 LAB