The vertex size-Ramsey number

被引:0
作者
Dudek, Andrzej [1 ]
Lesniak, Linda [1 ]
机构
[1] Western Michigan Univ, Dept Math, Kalamazoo, MI 49008 USA
关键词
Ramsey numbers; Vertex colorings; GRAPHS;
D O I
10.1016/j.disc.2016.02.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study an analogue of size-Ramsey numbers for vertex colorings. For a given number of colors r and a graph G the vertex size-Ramsey number of G, denoted by (R) over cap (v)(G, r), is the least number of edges in a graph H with the property that any r-coloring of the vertices of H yields a monochromatic copy of G. We observe that Omega(r) (Delta n) = (R) over cap (v)(G, r) = O-r(n(2)) for any G of order n and maximum degree Delta, and prove that for some graphs these bounds are tight. On the other hand, we show that even 3-regular graphs can have nonlinear vertex size-Ramsey numbers. Finally, we prove that (R) over cap (v) (T, r) = O-r(Delta(2)n) for any tree of order n and maximum degree Delta, which is only off by a factor of Delta from the best possible. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1753 / 1762
页数:10
相关论文
共 19 条
[1]  
Alon N., 2008, The Probabilistic Method
[2]  
Balogh J, 2010, ELECTRON J COMB, V17
[3]   ON SIZE RAMSEY NUMBER OF PATHS, TREES, AND CIRCUITS .1. [J].
BECK, J .
JOURNAL OF GRAPH THEORY, 1983, 7 (01) :115-129
[4]  
BECK J, 1990, ALGORITHMS COMBINATO, V5, P34, DOI DOI 10.1007/978-3-642-72905-8_4
[5]   A RAMSEY TYPE PROBLEM CONCERNING VERTEX COLORINGS [J].
BROWN, JI ;
RODL, V .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1991, 52 (01) :45-52
[6]  
BURR S. A., 1976, Ars Combin., V1, P167
[7]  
Chung F.R.K., 1988, Sel. Top. Graph Theory, V3, P151
[8]   The size-Ramsey number of trees [J].
Dellamonica, Domingos, Jr. .
RANDOM STRUCTURES & ALGORITHMS, 2012, 40 (01) :49-73
[9]   An Alternative Proof of the Linearity of the Size-Ramsey Number of Paths [J].
Dudek, Andrzej ;
Pralat, Pawel .
COMBINATORICS PROBABILITY & COMPUTING, 2015, 24 (03) :551-555
[10]  
Erdos P., 1978, Periodica Mathematica Hungarica, V9, P145, DOI 10.1007/BF02018930