Transport Mechanism of Guest Methane in Water-Filled Nanopores

被引:67
作者
Bui, Tai [1 ]
Phan, Anh [1 ]
Cole, David R. [2 ]
Striolo, Alberto [1 ]
机构
[1] UCL, Dept Chem Engn, London WC1E 7JE, England
[2] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA
关键词
MOLECULAR-STRUCTURE; SELF-DIFFUSION; HARTREE-FOCK; LIQUID WATER; DYNAMICS; SIMULATIONS; ADSORPTION; SURFACES; MODELS; SILICA;
D O I
10.1021/acs.jpcc.7b02713
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We computed the transport of methane through 1 nm wide slit-shaped pores carved out of selected solid substrates using classical molecular dynamics simulations. The transport mechanism was elucidated via the implementation of the well-tempered metadynamics algorithm, which allowed for the quantification and visualization of the free energy landscape sampled by the guest molecule. Models for silica, magnesium oxide, alumina, muscovite, and calcite were used as solid substrates. Slit-shaped pores of width 1 nm were carved out of these materials and filled with liquid water. Methane was then inserted at low concentration. The results show that the diffusion of methane through the hydrated pores is strongly dependent on the solid substrate. While methane molecules diffuse isotropically along the directions parallel to the pore surfaces in most of the pores considered, anisotropic diffusion was observed in the hydrated calcite pore. The differences observed in the various pores are due to local molecular properties of confined water, including molecular structure and solvation free energy. The transport mechanism and the diffusion coefficients are dependent on the free energy barriers encountered by one methane molecule as it migrates from one preferential adsorption site to a neighboring one. It was found that the heterogeneous water distribution in different hydration layers and the low free energy pathways in the plane parallel to the pore surfaces yield the anisotropic diffusion of methane molecules in the hydrated calcite pore. Our observations contribute to an ongoing debate on the relation between local free energy profiles and diffusion coefficients and could have important practical consequences in various applications, ranging from the design of selective membranes for gas separations to the sustainable deployment of shale gas.
引用
收藏
页码:15675 / 15686
页数:12
相关论文
共 64 条
[11]   Formation damage issues impacting the productivity of low permeability, low initial water saturation gas producing formations [J].
Bennion, DB ;
Thomas, FB .
JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2005, 127 (03) :240-247
[12]   THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS [J].
BERENDSEN, HJC ;
GRIGERA, JR ;
STRAATSMA, TP .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (24) :6269-6271
[13]  
Berthelot D., 1898, C. R. Hebd. Seances Acad. Sci, V126, P1703
[14]   Impact of solvent granularity and layering on tracer hydrodynamics in confinement [J].
Bollinger, Jonathan A. ;
Carmer, James ;
Jain, Avni ;
Truskett, Thomas M. .
SOFT MATTER, 2016, 12 (47) :9561-9574
[15]   PLUMED: A portable plugin for free-energy calculations with molecular dynamics [J].
Bonomi, Massimiliano ;
Branduardi, Davide ;
Bussi, Giovanni ;
Camilloni, Carlo ;
Provasi, Davide ;
Raiteri, Paolo ;
Donadio, Davide ;
Marinelli, Fabrizio ;
Pietrucci, Fabio ;
Broglia, Ricardo A. ;
Parrinello, Michele .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (10) :1961-1972
[16]   Molecular Dynamics Simulations of Water Structure and Diffusion in Silica Nanopores [J].
Bourg, Ian C. ;
Steefel, Carl I. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (21) :11556-11564
[17]   ABINITIO HARTREE-FOCK STUDY OF THE MGO(001) SURFACE [J].
CAUSA, M ;
DOVESI, R ;
PISANI, C ;
ROETTI, C .
SURFACE SCIENCE, 1986, 175 (03) :551-560
[18]   Scaling behaviour for the water transport in nanoconfined geometries [J].
Chiavazzo, Eliodoro ;
Fasano, Matteo ;
Asinari, Pietro ;
Decuzzi, Paolo .
NATURE COMMUNICATIONS, 2014, 5
[19]   Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field [J].
Cygan, RT ;
Liang, JJ ;
Kalinichev, AG .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (04) :1255-1266
[20]   A SMOOTH PARTICLE MESH EWALD METHOD [J].
ESSMANN, U ;
PERERA, L ;
BERKOWITZ, ML ;
DARDEN, T ;
LEE, H ;
PEDERSEN, LG .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (19) :8577-8593