Kinetic and related macroscopic models for chemotaxis on networks

被引:10
作者
Borsche, R. [1 ]
Kall, J. [1 ]
Klar, A. [1 ,2 ]
Pham, T. N. H. [1 ]
机构
[1] Univ Kaiserslautern, Dept Math, POB 3049, D-67653 Kaiserslautern, Germany
[2] Fraunhofer ITWM Kaiserslautern, D-67653 Kaiserslautern, Germany
关键词
Chemotaxis models; kinetic equation; Cattaneo equation; Keller-Segel equation; moment closure; macroscopic limits; relaxation schemes; coupling conditions; KELLER-SEGEL MODEL; CHEMOSENSITIVE MOVEMENT; DIFFUSIVE RELAXATION; HYPERBOLIC MODELS; BLOW-UP; SCHEMES; SYSTEMS; AGGREGATION; INSTABILITY; EQUATIONS;
D O I
10.1142/S0218202516500299
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider kinetic and associated macroscopic models for chemotaxis on a network. Coupling conditions at the nodes of the network for the kinetic problem are presented and used to derive coupling conditions for the macroscopic approximations. The results of the different models are compared and relations to a Keller-Segel model on networks are discussed. For a numerical approximation of the governing equations asymptotic preserving relaxation schemes are extended to directed graphs. Kinetic and macroscopic equations are investigated numerically and their solutions are compared for tripod and more general networks.
引用
收藏
页码:1219 / 1242
页数:24
相关论文
共 34 条
[1]   Gas flow in pipeline networks [J].
Banda, Mapundi K. ;
Herty, Michael ;
Klar, Axel .
NETWORKS AND HETEROGENEOUS MEDIA, 2006, 1 (01) :41-56
[2]   Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues [J].
Bellomo, N. ;
Bellouquid, A. ;
Tao, Y. ;
Winkler, M. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (09) :1663-1763
[3]   ON THE ASYMPTOTIC THEORY FROM MICROSCOPIC TO MACROSCOPIC GROWING TISSUE MODELS: AN OVERVIEW WITH PERSPECTIVES [J].
Bellomo, N. ;
Bellouquid, A. ;
Nieto, J. ;
Soler, J. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (01)
[4]   MULTISCALE BIOLOGICAL TISSUE MODELS AND FLUX-LIMITED CHEMOTAXIS FOR MULTICELLULAR GROWING SYSTEMS [J].
Bellomo, Nicola ;
Bellouquid, Abdelghani ;
Nieto, Juan ;
Soler, Juan .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (07) :1179-1207
[5]   THE SCALAR KELLER-SEGEL MODEL ON NETWORKS [J].
Borsche, R. ;
Goettlich, S. ;
Klar, A. ;
Schillen, P. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (02) :221-247
[6]   The one-dimensional Keller-Segel model with fractional diffusion of cells [J].
Bournaveas, Nikolaos ;
Calvez, Vincent .
NONLINEARITY, 2010, 23 (04) :923-935
[7]   A HYPERBOLIC MODEL OF CHEMOTAXIS ON A NETWORK: A NUMERICAL STUDY [J].
Bretti, G. ;
Natalini, R. ;
Ribot, M. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (01) :231-258
[8]   Volume effects in the Keller-Segel model: energy estimates preventing blow-up [J].
Calvez, Vincent ;
Carrillo, Jose A. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (02) :155-175
[9]   Parabolic models for chemotaxis on weighted networks [J].
Camilli, Fabio ;
Corrias, Lucilla .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 108 (04) :459-480
[10]   AN ASYMPTOTIC PRESERVING SCHEME FOR THE DIFFUSIVE LIMIT OF KINETIC SYSTEMS FOR CHEMOTAXIS [J].
Carrillo, Jose A. ;
Yan, Bokai .
MULTISCALE MODELING & SIMULATION, 2013, 11 (01) :336-361