Data assimilation for dispersion models

被引:0
|
作者
Reddy, K. V. Umamaheswara [1 ]
Singh, Tarunraj [1 ]
Cheng, Yang [1 ]
Scott, Peter D. [2 ]
机构
[1] SUNY Buffalo, Dept Mech & Aerosp Engn, Buffalo, NY 14260 USA
[2] SUNY Buffalo, Dept Comp Sci & Engn, Buffalo, NY USA
来源
2006 9TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4 | 2006年
关键词
chem-bio dispersion; data assimilation; ensemble kalman filter; ensemble square root filter; particle filter;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The design of an effective data assimilation environment for dispersion models is studied. These models are usually described by partial differential equations which lead to large scale state space models. The linear Kalman filter theory fails to meet the requirements of this application due to high dimensionality, strong non-linearities, non-Gaussian driving disturbances and model parameter uncertainties. Application of Kalman filter to these large scale models is computationally expensive and real time estimation is not possible with the present resources. Various Monte Carlo filtering techniques are studied for implementation in the case of dispersion models, with a particular focus on Ensemble filtering and particle filtering approaches. The filters are compared with the full Kalman filter estimates on a one dimensional spherical diffusion model for illustrative purposes.
引用
收藏
页码:391 / 398
页数:8
相关论文
共 50 条
  • [21] Ensemble Methods for Dynamic Data Assimilation of Chemical Observations in Atmospheric Models
    Sandu, Adrian
    Constantinescu, Emil
    Carmichael, Gregory R.
    Chai, Tianfeng
    Daescu, Dacian
    Seinfeld, John H.
    JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2011, 5 (04) : 667 - 692
  • [22] Integration of Markov mesh models and data assimilation techniques in complex reservoirs
    Panzeri, M.
    Della Rossa, E. L.
    Dovera, L.
    Riva, M.
    Guadagnini, A.
    COMPUTATIONAL GEOSCIENCES, 2016, 20 (03) : 637 - 653
  • [23] Integration of Markov mesh models and data assimilation techniques in complex reservoirs
    M. Panzeri
    E. L. Della Rossa
    L. Dovera
    M. Riva
    A. Guadagnini
    Computational Geosciences, 2016, 20 : 637 - 653
  • [24] Ensemble-based data assimilation for atmospheric chemical transport models
    Sandu, A
    Constantinescu, EM
    Liao, WY
    Carmichael, GR
    Chai, TF
    Seinfeld, JH
    Daescu, D
    COMPUTATIONAL SCIENCE - ICCS 2005, PT 2, 2005, 3515 : 648 - 655
  • [25] Data Assimilation for Agent-Based Models
    Ghorbani, Amir
    Ghorbani, Vahid
    Nazari-Heris, Morteza
    Asadi, Somayeh
    MATHEMATICS, 2023, 11 (20)
  • [26] Improving Hydrological Models With the Assimilation of Crowdsourced Data
    Avellaneda, P. M.
    Ficklin, D. L.
    Lowry, C. S.
    Knouft, J. H.
    Hall, D. M.
    WATER RESOURCES RESEARCH, 2020, 56 (05)
  • [27] Learning Variational Data Assimilation Models and Solvers
    Fablet, R.
    Chapron, B.
    Drumetz, L.
    Memin, E.
    Pannekoucke, O.
    Rousseau, F.
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2021, 13 (10)
  • [28] Graphical models for statistical inference and data assimilation
    Ihler, Alexander T.
    Kirshner, Sergey
    Ghil, Michael
    Robertson, Andrew W.
    Smyth, Padhraic
    PHYSICA D-NONLINEAR PHENOMENA, 2007, 230 (1-2) : 72 - 87
  • [29] USU global ionospheric data assimilation models
    Schunk, RW
    Scherliess, L
    Sojka, JJ
    Thompson, DC
    ATMOSPHERIC AND ENVIRONMENTAL REMOTE SENSING DATA PROCESSING AND UTILIZATION: AN END TO END SYSTEM PERSPECTIVE, 2004, 5548 : 327 - 336
  • [30] Data assimilation in multiscale chemical transport models
    Zhang, Lin
    Sandu, Adrian
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 1, PROCEEDINGS, 2007, 4487 : 1026 - +