Structure and hydration of BamHI DNA recognition site:: A molecular dynamics investigation

被引:25
作者
Castrignanò, T
Chillemi, G
Desideri, A
机构
[1] Univ Roma Tor Vergata, Dept Biol, I-00133 Rome, Italy
[2] Univ Roma Tor Vergata, INFM, I-00133 Rome, Italy
[3] Univ Rome La Sapienza, Supercomp Ctr Univ & Res, CASPUR, I-00185 Rome, Italy
关键词
D O I
10.1016/S0006-3495(00)76380-6
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The results of a 3-ns molecular dynamics simulation of the dodecamer duplex d(TATGGATCCATA)(2) recognized by the BamHI endonuclease are presented here. The DNA has been simulated as a flexible molecule using an AMBER force field and the Ewald summation method, which eliminates the undesired effects of truncation and permits evaluation of the full effects of electrostatic forces. The starting B conformation evolves toward a configuration quite close to that observed through x-ray diffraction in its complex with BamHI. This configuration is fairly stable and the Watson-Crick hydrogen bonds are well maintained over the simulation trajectory. Hydration analysis indicates a preferential hydration for the phosphate rather than for the ester oxygens. Hydration shells in both the major and minor groove were observed. In both grooves the C-G pairs were found to be more hydrated than A-T pairs. The "spine of hydration" in the minor groove was clear. Water residence times are longer in the minor groove than in the major groove, although relatively short in both cases. No special long Values are observed for sites where water molecules were observed by x-ray diffraction, indicating that water molecules having a high probability of being located in a specific site are also fast-exchanging.
引用
收藏
页码:1263 / 1272
页数:10
相关论文
共 51 条
[1]  
[Anonymous], 1976, Handbook of Biochemistry and Molecular Biology
[2]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[3]   HYDRATION OF DNA - TAKE 2 [J].
BERMAN, HM .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1994, 4 (03) :345-350
[4]   MOLECULAR-DYNAMICS STUDIES OF DNA [J].
BEVERIDGE, DL ;
RAVISHANKER, G .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1994, 4 (02) :246-255
[5]   Water molecules in DNA recognition II:: A molecular dynamics view of the structure and hydration of the trp operator [J].
Bonvin, AMJJ ;
Sunnerhagen, M ;
Otting, G ;
van Gunsteren, WF .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 282 (04) :859-873
[6]   INFLUENCE OF BASE COMPOSITION, BASE SEQUENCE, AND DUPLEX STRUCTURE ON DNA HYDRATION - APPARENT MOLAR VOLUMES AND APPARENT MOLAR ADIABATIC COMPRESSIBILITIES OF SYNTHETIC AND NATURAL DNA DUPLEXES AT 25-DEGREES-C [J].
CHALIKIAN, TV ;
SARVAZYAN, AP ;
PLUM, GE ;
BRESLAUER, KJ .
BIOCHEMISTRY, 1994, 33 (09) :2394-2401
[7]   MOLECULAR-DYNAMICS SIMULATIONS ON SOLVATED BIOMOLECULAR SYSTEMS - THE PARTICLE MESH EWALD METHOD LEADS TO STABLE TRAJECTORIES OF DNA, RNA, AND PROTEINS [J].
CHEATHAM, TE ;
MILLER, JL ;
FOX, T ;
DARDEN, TA ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (14) :4193-4194
[8]   Molecular dynamics simulations highlight the structural differences among DNA:DNA, RNA:RNA, and DNA:RNA hybrid duplexes [J].
Cheatham, TE ;
Kollman, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (21) :4805-4825
[9]   Insight into the stabilization of A-DNA by specific ion association: spontaneous B-DNA to A-DNA transitions observed in molecular dynamics simulations of d[ACCCGCGGGT](2) in the presence of hexaamminecobalt(III) [J].
Cheatham, TE ;
Kollman, PA .
STRUCTURE, 1997, 5 (10) :1297-1311
[10]  
CHEATHAM TE, 1997, MOL MODELING NUCL AC, P285